NOAA FISHERIES

Southeast
Fisheries
Science Center

Overview of ICCAT
 Atlantic Highly Migratory Species Stock Assessment Process

including examples of
SEFSC HMS research in the Gulf of Mexico

*International Commission for the Conservation of Atlantic Tunas

Migratory Species Committee
Gulf of Mexico Fishery Management Council January 30, 2017

ICCAT is responsible for the management of tunas and tuna-

 like species in the Atlantic Ocean and adjacent seas. In practice, along with bycatch species, this includes:- Atlantic Bluefin
- Bigeye
- Skipjack
- Yellowfin
- Albacore
- Swordfish
- White Marlin
- Blue Marlin
- Sailfish
- Spearfishes
U.S. domestic regulations for HMS cannot conflict with measures negotiated and adopted by ICCAT.
(But domestic regs can be used to ensure compliance/allocation e.g. size/bag limits, time/area closures).

Pelagic Sharks, such as

- Blue Shark
- Shortfin Mako
- Porbeagle

Although not yet assessed. . .

- Spanish Mackerel
- King Mackerel
- small tunas (e.g. Black Skipjack, Frigate Tuna, Atlantic Bonito)

ICCAT's Standing Committee on Research and Statistics (SCRS), on which every member of the Commission may be represented, is responsible for providing scientific advice to the Commission

- Defining procedures for the collection, compilation, analysis and dissemination of fishery statistics
- Conducting research with a principal focus on the effects of fishing on stock abundance
- Planning/Coordinating various national and international cooperative research programs
- Carrying out stock assessments and providing management advice

The ICCAT SCRS acts like an SSC and SEDAR combined: it conducts research and analyses, reviews results and conclusions, and delivers the scientific advice (periodically with independent reviewers), however the Commission is not compelled to follow the SCRs advice (and often doesn't).

Example of current stock status plot

Overfished

Example of management strategy matrix

Probability of green status ($\mathrm{B}>\mathrm{B}_{\text {мSY }}$ and $\mathrm{F}<\mathrm{F}_{\text {мSY }}$)

Catch (t)	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	
12,000	74\%	80\%	94\%	95\%	95\%	96\%	96\%	96\%	96\%	96\%	96\%	96\%	96\%	
14,000	74\%	78\%	93\%	94\%	95\%	95\%	95\%	96\%	96\%	96\%	96\%	96\%	96\%	
16,000	73\%	77\%	90\%	93\%	94\%	94\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	
18,000	68\%	72\%	83\%	89\%	91\%	92\%	92\%	93\%	93\%	93\%	93\%	94\%	94\%	
20,000	63\%	65\%	71\%	81\%	83\%	84\%	84\%	85\%	86\%	86\%	86\%	87\%	87\%	
22,000	62\%	63\%	65\%	73\%	78\%	79\%	79\%	79\%	80\%	80\%	80\%	80\%	80\%	
24,000	61\%	60\%	60\%	63\%	69\%	72\%	72\%	72\%	71\%	71\%	70\%	70\%	69\%	
26,000	55\%	54\%	53\%	52\%	52\%	55\%	56\%	57\%	56\%	55\%	54\%	53\%	52\%	
28,000	48\%	45\%	42\%	40\%	37\%	35\%	35\%	35\%	35\%	35\%	35\%	35\%	35\%	
30,000	39\%	35\%	33\%	30\%	28\%	26\%	24\%	23\%	21\%	20\%	19\%	18\%	18\%	
32,000	32\%	29\%	26\%	24\%	22\%	19\%	17\%	16\%	14\%	13\%	12\%	11\%	11\%	
34,000	28\%	25\%	22\%	19\%	15\%	13\%	11\%	9\%	8\%	7\%	7\%	6\%	6\%	
														Average catch
F	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2017-2019
0.75*FMSY	75\%	76\%	89\%	90\%	90\%	91\%	91\%	92\%	92\%	92\%	92\%	92\%	92\%	18,801
$0.80 *$ FMSY	74\%	75\%	86\%	88\%	89\%	89\%	89\%	89\%	89\%	89\%	90\%	90\%	90\%	19,627
0.85*FMSY	72\%	73\%	81\%	85\%	86\%	86\%	86\%	86\%	86\%	86\%	86\%	86\%	86\%	20,445
0.90*FMSY	69\%	69\%	74\%	81\%	81\%	82\%	82\%	82\%	82\%	82\%	82\%	82\%	82\%	21,253
0.95*FMSY	64\%	64\%	65\%	73\%	75\%	75\%	77\%	77\%	77\%	77\%	77\%	77\%	77\%	22,052
1.00*FMSY	59\%	59\%	57\%	61\%	66\%	67\%	67\%	67\%	63\%	59\%	57\%	56\%	57\%	22,842

ICCAT ASSESSMENT FREQUENCY BY STOCK

Stock	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Bluefin - West																	
Bluefin - East			-						-				-		\times		
Bigeye			-					-			\times						
Skipjack - West									-								
Skipjack - East									-						-		
Yellowfin				-					-								
Albacore - North																	
Albacore - South				-				\pm				=		-			
Albacore - Med												-					
Swordish - North							S										
Swordish - South			-							=				=			
Swordish - Med																	
White Marlin																	
Blue Marlin							-										
Sailifish - West		-								\times							
Sailish - East		-								-							
Blue Shark																	
Shortin Mako - N\&S					-												
Porbeagle - multiple																	

SCRS Officers	
Chairman, SCRS	David Die (USA)
Sub-Committee on Ecosystems	Kotaro Yokawa (Japan) - convener/bycatch
	Alex Hanke (Canada) - Ecosystem Based Fisheries Mgmt
Sub-Committee on Statistics	Guillermo Diaz (USA)
Methods Working Group	Michael Schirripa (USA)
Tropical Tunas Coordinator	Paul Bannerman (Ghana)
Bigeye tuna	Hilario Murua (EU)
Yellowfin tuna	Shannon Calay (USA)
Skipjack	Monin Justin Amande (Côte d'Ivoire)
Atlantic Albacore:	Haritz Arrizabalaga (EU)
Mediterranean Albacore	José Mº Ortiz de Urbina (EU)
Bluefin tuna Coordinator:	Clay Porch (USA)
Eastern Atlantic Bluefin	Ana Gordoa (EU)
Western Atlantic Bluefin	Gary Melvin (Canada)
Billfishes	Freddy Arocha (Venezuela)
Swordfish Coordinator:	Rui Coelho (EU)
North Atl Swordfish	Rui Coelho (EU)
South Atl Swordfish	Humber Andrade (Brazil)
Mediterranean Swordfish	George Tserpes (EU)
Sharks	Enric Cortés (USA)
Small tunas	Nouredine Abid (Morocco)
Enhanced Billfish Research Pgm Coord: John Hoolihan (USA)	
East	Fambaye Ngom Sow (Senegal)
West	John Hoolihan (USA)

SCRS Meetings Scheduled for 2017

Date
Meeting

Location

$6-11$ Mar	Bluefin tuna data preparatory meeting	Madrid, Spain
$28-31$ Mar	Shortfin mako shark data preparatory meeting	Madrid, Spain
$3-7$ Apr	Atlantic swordfish data preparatory meeting	Madrid, Spain
$24-28$ Apr	Small Tunas species group intersessional meeting	Miami, USA
$8-12$ May	Meeting of the ICCAT Working Group on Stock Assessment Methods	Madrid, Spain
$5-9$ June	Albacore species group intersessional meeting	Madrid, Spain
$12-16$ Jun	Shortfin mako shark stock assessment session	Madrid, Spain
$29-30$ Jun	Meeting of the Standing Working Group on Dialogue between	Madrid, Spain
$3-7$ Jul	Atlantic swordfish stock assessment session	Madrid, Spain
$10-14$ Jul	Sub-Committee on Ecosystems intersessional meeting	Madrid, Spain
$20-28$ Jul	Bluefin tuna stock assessment session	Madrid, Spain
$4-8$ Sep	Tropical tuna species group intersessional meeting	Madrid, Spain
$11-12$ Sep	3rd Meeting of the Ad Hoc Working Group on FADs	Madrid, Spain
$25-29$ Sep	SCRS Species Groups meetings (SC Statistics 25-26)	Madrid, Spain
$2-6$ Oct	Meeting of the Standing Committee on Research and Statistics (SCRS Annual Report to the Commission Adopted)	Madrid, Spain

Examples of SEFSC Highly Migratory Species Research in the Gulf of Mexico

Release Locations
 Release Locations

- Blackfin tuna
- Swordfish
Yellowfin tuna
- White marlin
- Blue marlin
- Bluefin tuna
Sailfish
- about 270,000 fish of almost 80 different species since the program began in 1954
nearly 200,000 deployments shown here
 ?
Sailish \%

蔡为:
\cdots

Recapture Locations

- Blackfin tuna
- Swordfish

Yellowfin tuna

- White marlin
- Blue marlin
- Bluefin tuna

Sailfish

\%.

Recreational Billfish Survey

- Billfish tournaments must register and report catch and effortddata to the SEFSC
- Onsite biological sampling (e.g. Venice, Louisiana)

(3) NOAA FISHERIES

Larval Surveys

Bluefin tuna larval collection and spawning season

Close-Kin Analysis

genetic mark-recapture to estimate the number of western Atlantic bluefin tuna spawners

As a result of recent advances in DNA analysis, we can now uniquely identify individuals:

And their progeny

Close-Kin Analysis

By counting number of parent-offspring pairs, we can estimate number of parents

Similar to a mark-recapture experiment

Successfully applied to

- Minke whales
- Southern Bluefin tuna

Close-Kin Analysis (Bravington et al. 2013)

A. Each juvenile 'tags' its parent's DNA marker

Close-Kin Analysis (Bravington et al. 2013)

B. Sample some fraction of adults and juveniles, obtain genotypes

Close-Kin Analysis (Bravington et al. 2013)

C. Genetically identify matches, i.e. number of parent/offspring pairs; here there are 4

Close-Kin Analysis (Bravington et al. 2013)

D. Estimate number of spawners:

$$
\widehat{N}=2 * J * A / P O P
$$

4 Juveniles sampled
6 adults sampled
4 POPs
$\widehat{N}=2 * 4 * 6 / 4=12$ spawners

Sampling of Bluefin Tuna for Close-Kin analysis

Larvae

- larval survey ~1000-1500 per year
- the use of larvae, rather than juveniles, would avoid the need to assign stock id to the samples
- may be sufficient for CKA, if larvae are sufficiently mixed so that samples have diverse parentage
- a project is underway to evaluate the utility of samples from the Spring larval survey

Adults

- 1500-2100 adult samples will require sampling of the US, Canadian, Japanese or Mexican fisheries.
- Some Eastern origin so may need ~ 2100 fish (assuming max. of 40% Eastern origin)
- Total annual catch ~ 7000 spawners (age $8+$ fish) requires tiny tissue sample ($\sim 1 \mathrm{mg}$, pencil eraser size) from $\sim 30 \%$ of catch
- If study was extended to multiple years annual totals would be much less

Some additional ongoing bluefin tuna research:

Joint US-Japan-Canada-Mexico longline CPUE indices
Overlap in CPUE across Northwest Atlantic
Scientists from all four countries are conducting joint analyses of data

Young of the year (YOY)

 sampling/survey in Florida Straits potential for YOY index or to obtain key biological samples No YOY have been caught in 2015-2016, There have been reports of sightings by non-participating fishermen

Bluefin 34-43 gillrakers

Blackfin 19-25 gillrakers

Gulf of Mexico Bluefin Tuna Electronic Tagging 32 tags, at large 10 - 119 days

SA -

Yellowfin Tuna 155 cm

 Tagging Date: 8/02/13 Days at Large: 47

Yellowfin Tuna 155 cm

 Tagging Date: 8/02/13 Days at Large: $\mathbf{4 7}$

Example of data available from recovered tag:

Density plot of depth-temperature combinations (recorded every 10 seconds) for a single yellowfin tuna. Each color represents 10\% of the total.

Example of data available from recovered tag:
Density plot of depth-temperature combinations (recorded every 10 seconds) for a single yellowfin tuna. Each color represents 10% of the total.

Gulf of Mexico - Mexican waters Blue Marlin Electronic Tagging

3 tags, at large 9 - 180 days

