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Planned Sample Design and Analysis

• The planned sample design was a stratified random design
• 3 Stratification variables

• Region (FL, ALMS, LA, TX)
• Habitat (UCB, Natural, Artificial reefs) 
• Depth (Shallow, Mid, Deep)

• Not all strata were present in all regions, so # of strata varied by region.
• Estimation of total abundance was carried out with a standard stratified sampling estimator: 
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• If sampling units are items (e.g., artificial reefs), 𝑡̂𝑡ℎ is the mean-per-unit estimator:

𝑡̂𝑡ℎ𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁ℎ �𝑦𝑦ℎ.

• If sampling units are transects of unequal size or two-stage (pyramids), 𝑡̂𝑡ℎ is the standard ratio estimator:
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= 𝑡𝑡ℎ𝑥𝑥 × 𝑑̂𝑑ℎ,

where 𝑡𝑡ℎ𝑥𝑥 is the total area of the universe in stratum h and 𝑑̂𝑑ℎ is its estimated density.



Planned Sample Design and Analysis

•The variance of the stratified estimator was estimated by the sum of the estimated 
variances of the total estimates in each stratum:
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and
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where 𝑠𝑠ℎ𝑦𝑦2 is the sample variance of 𝑦𝑦ℎ𝑖𝑖 (# of fish) and 𝑠𝑠ℎ𝑑𝑑2 is the sample variance of the 
residuals 𝑑𝑑ℎ𝑖𝑖 = 𝑦𝑦ℎ𝑖𝑖 − 𝑑̂𝑑𝑥𝑥ℎ𝑖𝑖 in stratum h (known as Taylor Series variance estimate)
•Note that the fpc in the ratio estimator is a function of the estimated number of units in the 
entire population, �𝑁𝑁ℎ = ⁄𝑡𝑡ℎ𝑥𝑥 𝑥̅𝑥ℎ.

•The estimates and standard errors were computed in SAS PROC SURVEYMEANS



Changes to sample design and analysis plan

•Sample sizes changed due to complexities of data collection (e.g.,  
malfunctioning gear, technical glitches on video). Sampling was assumed 
MCAR; no adjustments were made for non-response, except reduced 
sample size.

•Sample design was adapted when new information was discovered about 
the habitat (e.g., pyramids in Texas) 

• Stratum was added; design adapted to a cluster design, with first stage = grids. Ratio estimator, 
where # of pyramids in grid was measure of size, was used.

•Poststrata were added beyond original plan. E.g., Florida was divided into 
three regions (NW, mid, south). These were treated as strata for estimation 
purposes.



Changes to sample design and analysis plan

•Data from LA were mostly unavailable. Data for like habitats from TX were 
substituted for missing LA data for estimating densities. Then ratio estimates were 
computed, expanding these densities to LA stratum areas. 

•We did not make an estimate of variance (or standard error) for the entire GOM, 
since the data from TX were reused. This makes the additive formula for variance 
across strata incorrect.  

•Instead, we made two estimates of SE: one for LA which used substituted data 
from TX + some LA data), and another for the GOM excluding LA. 



Variance estimation

•Several reviewers commented that our variance estimate may be biased low, 
due to ignoring measurement error and autocorrelation between 
observations. 

•Under certain simple measurement error models, measurement error actually 
does not cause underestimation. (Of course if those models don’t hold, it will.)

•The reason is similar to the fact that variance for a multi-stage sample design 
can be estimated almost unbiasedly when first stage fpc is small with only  the 
between-PSU variance (e.g., see Cochran Section 10.4). All survey sampling 
software (SAS PROC SURVEYMEANS, R survey) does it this way.



A visual explanation for effect of measurement error on estimating variance

True 𝑌𝑌𝑖𝑖’s (but you can’t see them)
_________________________________________________________

Measured �𝑌𝑌𝑖𝑖’s ( �𝑌𝑌𝑖𝑖= 𝑌𝑌𝑖𝑖+∈𝑖𝑖)
_________________________________________________________

‘s are more variable than   ‘s. Thus s2 already incorporates variability of ∈𝑖𝑖.  

Suppose �𝑌𝑌𝑖𝑖= 𝑌𝑌𝑖𝑖+∈𝑖𝑖, where 𝑌𝑌𝑖𝑖~ 𝜇𝜇,𝜎𝜎𝑦𝑦2 & ∈𝑖𝑖 ~ 0,𝜎𝜎𝑒𝑒2 Var( �𝑌𝑌𝑖𝑖)= 𝜎𝜎𝑦𝑦2+ 𝜎𝜎𝑒𝑒2



A nerdy explanation for effect of measurement error on estimating variance

•Suppose �𝑌𝑌𝑖𝑖= 𝑌𝑌𝑖𝑖+∈𝑖𝑖, where 𝑌𝑌𝑖𝑖~ 𝜇𝜇,𝜎𝜎𝑦𝑦2 & ∈𝑖𝑖 ~ 0,𝜎𝜎𝑒𝑒2 Var( �𝑌𝑌𝑖𝑖)= 𝜎𝜎𝑦𝑦2+ 𝜎𝜎𝑒𝑒2

•Let ��𝑌𝑌 denote the sample mean of n �𝑌𝑌𝑖𝑖′s.

•Var( ��𝑌𝑌) = 𝑉𝑉𝑉𝑉𝑉𝑉( �𝑌𝑌𝑖𝑖)
𝑛𝑛

= 𝜎𝜎𝑦𝑦2+𝜎𝜎𝑒𝑒2

𝑛𝑛
.

•But the estimated sample variance of ��𝑌𝑌 if we ignore measurement error is 𝑠̂𝑠
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. But 

E(𝑠̂𝑠
2

𝑛𝑛
)= 𝜎𝜎𝑦𝑦

2+𝜎𝜎𝑒𝑒2

𝑛𝑛
so it estimates the inflated variability.



Comments on the effect of autocorrelation on estimating variance

•If every transect begins at a random point and the entire transect is taken as a 
sampling unit, then no underestimation of variance occur with the ratio estimator 
(i.e., variance of residuals from ratio model). That is, the ratio estimator effectively 
treats the transect as a cluster, and computes variances appropriately.

•If the transects were broken into pieces and treated as if they start at a random 
point when they don’t, then autocorrelation will cause underestimate variance 
since the residuals will be correlated. 



Comments on the other effects on estimating variance

•Treating pipeline data as a random sample may be slightly inaccurate, but not due 
to autocorrelation, if random starting points are selected.

• Instead it is due to the fact that all transects along the  pipeline are treated as 
having the same probability of selection. Those transects beginning within a half 
transect of the end of a pipeline have a smaller probability of selection than others.

•This means they should have differing weights, which would affect variance and
total estimates themselves.

•However, this has the potential of affecting a very small number of sample units.



How does finite sampling point of view relate to estimation approach taken

• We are approximating the sample of transects that could be selected using the “drop a random point and 
go in a random direction for an arbitrary distance” as defining an idealized population similar to the one below. 
Here dots are fish and we are interested in estimating the total number of fish from a sample.
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My estimate of the number of fish in the stratum would be density in sample * total area
= 5+0+0
12+4+16

∗ 126 = 20.3 and its SE 𝑣𝑣(𝑡̂𝑡ℎ𝑦𝑦,𝑟𝑟) = 𝑡𝑡ℎ𝑥𝑥2 × ( �𝑠𝑠ℎ𝑑𝑑2 𝑛𝑛ℎ) 1 − 𝑛𝑛ℎ
�𝑁𝑁ℎ

= 934. 

The fact that the data are 
autocorrelated within transects
Is not relevant, since the random-
ness comes from the selection.

However, if we split a “transect”
In half, we  get the same estimate
of fish, but a smaller estimate of
variance.
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