

A new search approach to improve the accuracy of stock assessment forecasts

GMFMC SSC meeting, Sept 27, 2021

Nathan Vaughan

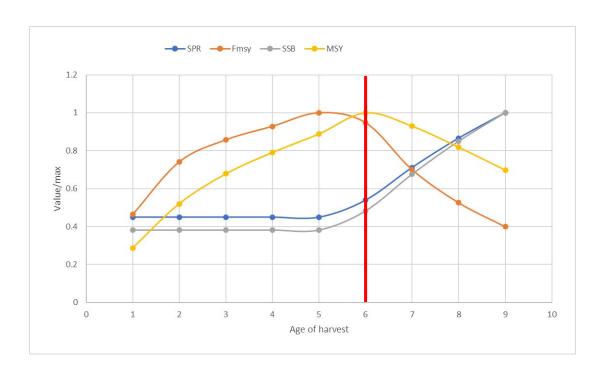
Vaughan Analytics in support of SEFSC, NOAA, Miami, FL

Stock assessment forecasting: Achieving multiple objectives

- Achieve target benchmarks for yield or stock status such as MSY or SPR30%
- Estimate the F that achieves benchmarks at equilibrium (F_{OFL})
- 1. Project fishery at $F = F_{OFL}$ (or an alternative target) in every year
- 1. Project with catch fractions between fishing sectors equal to regulated allocation fractions.
- 1. Project with annual fleet specific effort held constant between fleets within allocated fishing sectors.

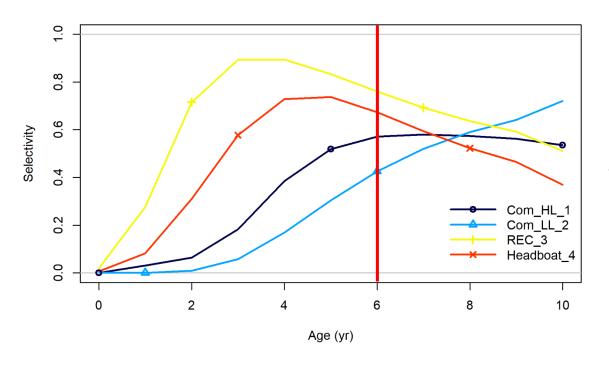
Stock assessment forecasting: Achieving multiple objectives

SSB	2471	2652	2813	 3179
SSB/SSB _{TARGET}	0.78	0.83	0.88	 1
F_{TOTAL}	0.242	0.242	0.242	 0.242
$Yield_{TOTAL}$	953	1014	1063	 1162
Yield _{s1} Yield _{s2}	257 696	274 740	287 776	 314 848
F ₁ F ₂ F ₃ F ₄	0.177 0.018 0.558 0.010	0.173 0.018 0.548 0.010	0.171 0.017 0.543 0.010	 0.167 0.017 0.539 0.010
	Year ₁	Year ₂	Year ₃	 Year ₁₀₀

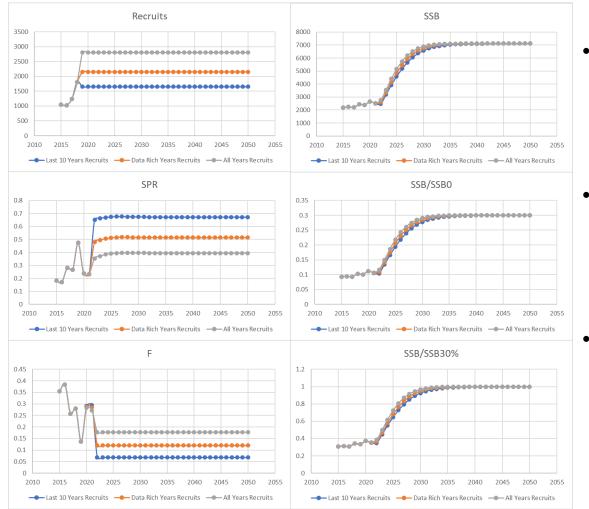


Stock assessment forecasting: Influential assumptions

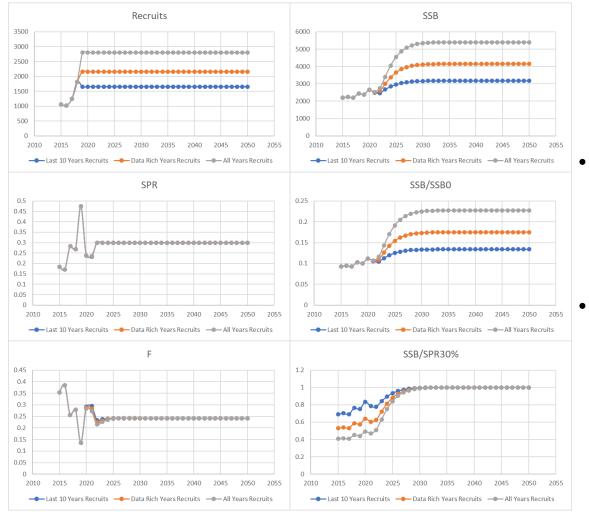
- Future recruitment patterns define stock productivity and variability (Recent mean, S/R curve, deviations)
- Fleet selectivity and retention functions (recent or upcoming size limit regulations)
- Fishing sector allocations (adjusting catch fraction between fleets adjusts the aggregate fishery selectivity)
- Benchmark targets SSB/SSB0 or MSY vs SPR or Fmax (Raw SSB or MSY are intuitive but can produce variable F_{OFL} results while SPR and Fmax produce stable F results but could have unintended impacts)


Benchmark dependence on forecast assumptions – Global MSY

- Global MSY search example
- SPR, F_{MSY}, SSB, MSY achieved when only a single age class is harvested
- In practice fisheries represent a weighted average of these results based on fleet selectivity and allocations


Benchmark dependence on forecast assumptions – Fleet Selectivity

- As seen in global MSY calculations, the age/size of capture impacts the sustainable yield of a fishery
- Due to the variability in selectivity between fleets, allocation fractions, sector specific closures, size limits, and discard mortality will often impact benchmark values


Benchmark dependence on forecast assumptions – Recruitment SSB30%

- Recruitment/productivity assumptions can impact benchmarks (e.g. MSY, SSB_{msy}, F_{msy})
- May impact current overfished and overfishing status determinations
- An SSB% benchmark will achieve variable F_{msy} (overfishing) but stable SSB_{msy} (overfished) determinations

Benchmark dependence on forecast assumptions – Recruitment SPR30%

- Recruitment/productivity assumptions can impact benchmarks (e.g. MSY, SSB_{msy}, F_{msy})
- May impact current overfished and overfishing status determinations
 - An SPR% benchmark will achieve stable F_{msy} (overfishing) but varying SSB_{msy} (overfished) determinations

Default Stock Synthesis approach to allocations

- Project with annual fleet specific effort held constant between all managed fleets in the fishery
- Annual total effort scaled to achieve F= F_{ofl} and benchmark targets at equilibrium
- Fleet specific catch is calculated and sector effort is adjusted to achieve target catch allocations
- Single pass adjustment that does not account for the impact of fleet selectivity
- Final equilibrium results may not achieve the target benchmark and/or the target annual F

```
#C forecast file written by R function SS writeforecast
#C rerun model to get more complete formatting in forecast.ss_new
#C should work with SS version: 3.3
#C file write time: 2021-09-14 14:45:16
 # benchmarks
0.3 # SPRtarget
3 # Btarget
#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF, beg
 # Bmark relF Basis
# Forecast
00 # Nforecastyrs
#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF, beg_recruits, end_rec
2016 2018 2016 2018 1984 2018
 # ControlRuleMethod
    # BforconstantF
 # N forecast loops
 # First forecast loop with stochastic recruitment
 # Forecast loop control 3
 # Forecast loop control 4
 #_Forecast_loop_control_5
2119 #_FirstYear_for_caps_and_allocations
 # stddev of log catch ratio
 #_Do_West_Coast_gfish_rebuilder_output
# fleet relative F
# Note that fleet allocation is used directly as average F if Do Forecast=4
 # basis for fcast catch tuning
# enter list of fleet number and max for fleets with max annual catch; terminal
# enter list of fleet number and allocation group assignment, if any; terminate
# Fleet Group
#_Year Group 1 Group 2
-9999 -1 -1
-1 # InputBasis
# Year Seas Fleet Catch or F Basis
```


Default Stock Synthesis approach to allocations

- Project with annual fleet specific effort held constant between all managed fleets in the fishery
- Annual total effort scaled to achieve F= F_{ofl} and benchmark targets at equilibrium
- Fleet specific catch is calculated and sector effort is adjusted to achieve target catch allocations
- Single pass adjustment that does not account for the impact of fleet selectivity
- Final equilibrium results may not achieve the target benchmark and/or the target annual F

```
#C forecast file written by R function SS writeforecast
#C rerun model to get more complete formatting in forecast.ss_new
#C should work with SS version: 3.3
#C file write time: 2021-09-14 14:45:16
  # benchmarks
   # SPRtarget
   # Btarget
                       enter list of fleet number
    # FirstYear fo
 # stddev of log_c
 # Do West Coast c
Note that flee
 #_Year Group 1 Group
 # Year Seas Fleet Catch or F Basis
```


Previous SEFSC approach to achieve benchmark target

- Iterative search for the target benchmark on top of the base SS allocation adjustment
- Adjusts the target benchmark input to SS until the achieved benchmark is equal to the true target benchmark
- Achieves target benchmarks only for SSB% or SPR% proxies
- MSY or F_{max}(MSY per recruit) benchmarks can not be achieved with this approach
- Does not ensure that annual F targets are achieved

```
#C forecast file written by R function SS writeforecast
#C rerun model to get more complete formatting in forecast.ss_new
#C should work with SS version: 3.
            time: 2021-09-14 14:45:16
  # benchmarks
 # MSY
  3 # SPRtarget
 3 # Btarget
Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF, beg_
 # Bmark relF Basis
 # Forecast
    # Nforecas
Fcast_years: beg_seld, end_selex, beg_relF, end_relF, beg_recruits, end_rec
 16 2018 2016 2018 1984
   Fcast_selex
   ControlRuleMethod
    # BforconstantF
                              benchmarks
                                 SPRtarget
 # fleet elative F
                                 Btarget
# Note that fleet al:
3 #_basis for fcast
# enter list of fleet
                         Bmark years: beg bio
-9999 -1
# enter list of area
-9999 -1
# enter list of flee
 # Fleet Group
                              Bmark relF Basis
                              Forecast
                              # Nforecastyrs
# Year Group 1
-9999 -1 -1
-1 # InputBasis
# Year Seas Fleet Catch or F
```


New approach to achieve multiple forecasting targets - inputs

- Uses SS capacity to input fixed Fleet/Year specific catch/F values
- Iteratively adjusts fleet specific annual F for 100 years of projection to achieve all forecasting targets
- Achieves benchmark target, annual F targets, allocation targets, and relative effort targets simultaneously
- Functional for all benchmark targets (SSB%, SPR%, MSY, F_{max})
- Added capacity to automate OFL, ABC, and F_{rebuild} calculations that conform to all targets
- Uses three independent scaling functions to adjust F values

```
# InputBasis
#C rerun model to get more comp
#C should work with SS version:
                                Year Seas Fleet
                                                           Catch or F Basis
#C file write time: 2021-09-14
                                                         56.90700000
 # benchmarks
# MSY
                                 2019
                                                          22.97900000
3 # SPRtarget
0.3 # Btarget
                                 2019
# Bmark years: beg bio, end bio
# Bmark relF Basis
                                                          11.89100000
1 # Forecast
100 # Nforecastyrs
# F scalar
#_Fcast_years: beg_selex, end_
2016 2018 2016 2018 1984 20
                                 2021
 # Fcast_selex
                                 2021
 # ControlRuleMethod
                                                          11.89100000
0.04 # BforconstantF
                                                          66.11500000
.01 # BfornoF
# Flimitfraction
                                                                                 3
                                                           1.37700000
 # N forecast loops
                                                           0.13281858
 # First forecast loop with st
# Forecast loop control
# Forecast loop control
 # Forecast loop control
                                                           0.61455346
2119 #_FirstYear_for_caps_and_a
 # stddev of log catch ratio
 # Do West Coast gfish rebuild
                                                           0.12842608
    # Ydecl
2019 # Yinit
1 # fleet relative F
                                                           0.59430693
# Note that fleet allocation is
                                                                               99
# basis for fcast catch tun n
# enter list of fleet number a
                                 2024
                                                                               99
                                                           0.12487318
# enter list of area ID and max
                                 2024
                                                                               99
                                                           0.01274685
-9999 -1
                                 2024
                                                                               99
# enter list of fleet number an
# Fleet Group
                                 2024
-9999 -1
# Year Gr
   99 -1 -1
 1 # InputBasis
# Year Seas Fleet
                  Catch or F Basis
                  14.51000000
```

1) An equilibrium benchmark scaler which applies a single scalar multiplier to every F

```
#Calculate depletion target adjustment scale depending on the specified target (SPR raif (Forecast_target==1) {
    search_step<-0.00001
    Target.Depletion <- forecast[["SPRtarget"]]
    Depletion<-SPRfit$SPR

Achieved.Depletion <- median(Depletion[(length(Depletion)-29):length(Depletion)])
    DepletionScale <- (1-Target.Depletion)/(1-Achieved.Depletion)

DepletionScale <- (-log(1-((1-exp(-FScale))*DepletionScale))/FScale)

Depletion_R<-TimeFit3$SpawnBio/Virgin_bio
    Target.Rebuild <- mean(Depletion_R[(length(Depletion_R)-9):length(Depletion_R)])

}else if(Forecast_target==2) {
    Depletion_C-_TimeFit3$SpawnBio/Virgin_bio</pre>
```


2) An annual F scaler that applies a year specific multiplier to all fleets in each year

```
#Fmult2 calculations define the multiplier for adjusting annual F values
#Zero catch years are identified first to prevent divide by zero errors in the scaling and
#to tell the search algorithm that the target has been achieved
zero_catch <- which (SPRfit$F_report[sort(rep(seq_along(SPRfit$F_report),length(seasons)*length(F_cols)))]==0)
if(length(zero_catch)>0){
    if(FScale==0){
        Fmult2[zero_catch] <- 1
    }else{
        Fmult2[zero_catch] <- 2
    }
    Fmult2[-zero_catch] <- FScale/SPRfit$F_report[sort(rep(seq_along(SPRfit$F_report),length(seasons)*length(F_cols)))][-zero_catch]
}else{
    Fmult2 <- FScale/SPRfit$F_report[sort(rep(seq_along(SPRfit$F_report),length(seasons)*length(F_cols)))]
}
#If in a rebuild search phase the rebuild years are now adjusted independently of the later F_OFL years
if(fitting_Rebuild==TRUE){
    Fmult2[rebuild_ref] <- Rebuild.Scale/SPRfit$F_report[sort(rep(seq_along(SPRfit$F_report),length(seasons)*length(F_cols)))][rebuild_ref]
```


3) An annual allocation scaler that applies a year and sector specific multiplier to each fleet within a sector and year

```
#Here the achieved catch fractions by fishing sector and year are calculated and compared relative
#to the target allocations. An adjustment multiplier is then computed to adjust fleet Fs closer to a
#value expected to achieve the target allocations.
if(FScale > 0){
  if(n groups>0){
    Catch temp <- TimeFit3[,Catch cols3]</pre>
    Catch tot <- apply(Catch temp[, which (groups!=0)],1, sum)
    for(i in 1:n groups) {
      sort.mat <- matrix(NA, nrow = 100*length(seasons)*length(which(groups==i)), ncol = 2)</pre>
      sort.mat[,1] <- rep(1:100, length(seasons) *length(which(groups==i)))</pre>
      sort.mat[,2] <- rep(apply(Catch temp[,which(groups==i)],1,sum)/Catch tot,length(seasons)*length(which(groups==i)))
      sort.mat <- sort.mat[order(sort.mat[,1]),]</pre>
      Allocations[Allocations[,4]==i,6] <- sort.mat[,2]
  Fmult3 \leftarrow (0.5*(Allocations[,5]/Allocations[,6]-1)+1)
}else{
  Fmult3 <- rep(1,100*length(seasons)*length(F cols))
```



```
#Adjust any multipliers of fixed catch values to 1 so that the
#search algorithm will consider them to have achieved their target
Fmult1[fixed ref] <- 1
Fmult2[fixed ref] <-
Fmult3[fixed_ref] <- 1
Comb Mult <- Fmult1*Fmult2*Fmult3
#Record the previous adjustment values so they can be used to optimize
#step sizes to speed up target convergence
Last Mult1 <- DepletionScale
Last Mult2 <- median (Fmult2[-fixed ref])
Last Mult2a <- median(Fmult2[rebuild ref[which(!is.element(rebuild ref, fixed ref))]])
Last Mult2b <- median (Fmult2[-sort (unique (c (fixed ref, rebuild ref)))])
#Plot out progess in achieving targets. This is primarily for diagnosis of a
#run that is failing to converge on an answer in a reasonable period of time.
col_options <- c("black","dark red","dark green","dark blue","orange","purple","red","green","blu
point options <- c(16,15,17,18,8,9,10,11,12,13,0,1,2,3,4,5,6,14,21,22,23,24,25,19,20)
plot (Fmult1, xlab="year/season/fleet", ylab="Depletion Adjustment", col=rep (col options[seq along (F
plot (rep (F adjust1, 100 *length (seasons) *length (F cols)), xlab="year/season/fleet", ylab="Depletion 0
plot (Fmult2, xlab="year/season/fleet", ylab="F Adjustment", col=rep (col options[seq along (F cols)], 1
plot (rep (F adjust2, 100 *length (seasons) *length (F cols)), xlab="year/season/fleet", ylab="F Optimizat
plot (Fmult3, xlab="year/season/fleet", ylab="Allocation Adjustment", col=rep (col options[seq along (F
plot (F adjust3, xlab="year/season/fleet", ylab="Allocation Optimization Adjustment", col=rep(col opt
#Check if all targets have been achieved and if so stop fitting
if (max (abs (1-Fmult1))>=Depletion. Threshold | max (abs (1-Fmult2))>=Annual. F. Threshold | max (abs (1-F
if(FScale==0 & loop>2) {keepFitting<-FALSE}</pre>
#Here we check that no Fs have been reduced to zero that need some catch
#If that has occured repace the zero F with a small starting value 0.05 so that the
#search algorithm can act on it to achieve the true target value.
#This is needed if the ABC loop was used to perform a zero catch run and then
#rebuild run is performed starting from those zero values
zero Fs <- which (forecast F[, 4]==0)
increase Fs <- which (Comb Mult>1)
if (length (zero Fs)>0 & length (increase Fs)>0) {
  mod Fs <- zero Fs[is.element(zero Fs,increase Fs)]</pre>
  if (length (mod Fs) > 0) {
   forecast F[mod_Fs,4] <- 0.05
 }
#Now adjust the previous F values by the estimated multiplier to create a
#new estimate of the target Fs, make sure to overwrite any fixed catches
#with their original values.
forecast F[,4] <- forecast F[,4] *Comb Mult
forecast F[fixed ref, 4] <- Fixed catch target[, 4]
forecast[["ForeCatch"]] <- forecast F</pre>
#Write the modified forecast data out to a file and rerun projections
unlink(paste0(getwd(), "/forecast.ss"))
SS writeforecast (mylist=forecast, overwrite = TRUE)
shell(paste("cd /d ",getwd()," && ss -nohess",sep=""))
#If all values have converged check if this is the OFL, ABC, or Rebuild loop
```

A combined all target multiplier is used to adjust SS input values and the forecast is rerun before again comparing achieved and target outcomes

New approach to achieve multiple forecasting targets – OFL/ABC/Rebuild

OFL

- Benchmark scaler is used with the calculation depending on the designated target (MSY, SPR%, SSB%)
- Once completed all results are saved to an OFL folder

ABC

- Currently targets an annual F_{ABC}=X%* F_{OFL}
- Benchmark scaler is set to 1
- Once completed all results are saved to an ABC folder

Rebuild

- Targets F_{OFL} after rebuilding target year a reduced F in earlier years to achieve SSB_{OFL} in the rebuild year
- Benchmark scaler is set to 1
- Once completed all results are saved to a Rebuild folder

New approach to achieve multiple forecasting targets – SSB% and SPR%

- Both the SSB% and SPR% benchmarks targets have a known status target and can therefore use a simple direct search.
- SSB% target is searching to achieve the desired SSB/SSB0 ratio at equilibrium
- SPR% target is adjusted for projected future recruitment by searching to achieve the desired (SSB/Recruits)/(SSB0/R0) ratio at equilibrium
- When projected recruitment is less than R0 SPR% F will be greater than SSB% F. When projected recruitment is greater than R0 SPR% F will be less than SSB% F.

New approach to achieve multiple forecasting targets – MSY and Fmax

```
}else if (Forecast target == 2) {
 Depletion <- TimeFit3$SpawnBio/Virgin bio
 Achieved. Depletion <- median (Depletion [ (length (Depletion) -29) : length (Depletion)])
 if (First run == TRUE) {
    Target.Depletion <- Achieved.Depletion
    First run <- FALSE
 Target.Rebuild <- Target.Depletion
 if (max (abs (1-Fmult3)) > Allocation. Threshold |
    max(abs(1-Fmult2))>Annual.F.Threshold |
    max (abs (1-Fmult1)) > Depletion. Threshold) {
    loop<-loop-
    subloop<-subloop+1
    if (F max==TRUE) {
      Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])/
                        sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"])
   }else{
      Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])
   MSY.Fit[1,] <- c(Achieved.Catch, FScale, Achieved.Depletion, Target.Depletion)
  }else{
    subloop<-0
   if (F max==TRUE) {
      Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])/
                        sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"])
      Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])
   MSY.Fit <- rbind(MSY.Fit[1,],MSY.Fit)
   MSY.Fit[1,] <- c(Achieved.Catch, FScale, Achieved.Depletion, Target.Depletion)
      if (Achieved.Catch<Last Achieved Catch) {
        search step <- -0.5*search step
      Target.Depletion <- Target.Depletion+search step
      min diff <- which (abs (MSY.Fit[, 4]-Target.Depletion) < 0.001)
      if(length(min diff)>0){
        Old.Catch <- MSY.Fit[min diff[1],1]
        if (Old.Catch<Achieved.Catch) {
          search step <- -0.5*search step
        Target.Depletion <- Target.Depletion+search step
       Achieved.Catch <- Old.Catch
    }else{
      steps \leftarrow seq(0.1,0.9,0.1)
      New.Target.Depletion <- steps[which(abs(steps-Target.Depletion) == min(abs(steps-Target.Depletion)))[1]]
      if (New. Target. Depletion < Target. Depletion) {
        search step <- -1*search step
      Target.Depletion <- New.Target.Depletion
    Last Achieved Catch <- Achieved.Catch
 DepletionScale <- (1-Target.Depletion)/(1-Achieved.Depletion)
```

- For MSY (raw retained catch) and Fmax (retained catch per recruit) search the value of the benchmark target is unknown
- A two stage search is needed to only include results with correct allocations in the search for MSY
- Stage one = SSB% target search
 - Stage two = search SSB% values to find SSB% that achieves MSY or Fmax

New approach to achieve multiple forecasting targets – MSY and Fmax

```
}else if (Forecast target==2) {
 Depletion <- TimeFit3$SpawnBio/Virgin bio
 Achieved. Depletion <- median (Depletion [ (length (Depletion) -29) :length (Depletion)])
 if (First run == TRUE) {
   Target.Depletion <- Achieved.Depletion
   First run <- FALSE
 Target.Rebuild <- Target.Depletion
 if (max (abs (1-Fmult3)) > Allocation. Threshold |
    max(abs(1-Fmult2))>Annual.F.Threshold |
    max (abs (1-Fmult1)) > Depletion. Threshold) {
   loop<-loop-
   subloop <- subloop +1
   if (F max==TRUE) {
     Achieved.Catch <- sum (TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), Catch cols3])/
                        sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"])
   }else{
     Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])
   MSY.Fit[1,] <- c(Achieved.Catch, FScale, Achieved.Depletion, Target.Depletion)
   subloop<-
   if (F max==TRUE) {
     Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])/
                        sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"])
     Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])
   MSY.Fit <- rbind(MSY.Fit[1,],MSY.Fit)
   MSY.Fit[1,] <- c(Achieved.Catch, FScale, Achieved.Depletion, Target.Depletion)
     if (Achieved.Catch<Last Achieved Catch) {
       search step <- -0.5*search step
     Target.Depletion <- Target.Depletion+search step
     min diff <- which (abs (MSY.Fit[, 4]-Target.Depletion) < 0.001)
     if(length(min diff)>0){
       Old.Catch <- MSY.Fit[min diff[1],1]
       if (Old. Catch < Achieved. Catch) {
         search step <- -0.5*search step
       Target.Depletion <- Target.Depletion+search_step
       Achieved.Catch <- Old.Catch
   }else{
     steps \leftarrow seq(0.1,0.9,0.1)
     New.Target.Depletion <- steps[which(abs(steps-Target.Depletion)==min(abs(steps-Target.Depletion)))[1]]
     if (New. Target. Depletion < Target. Depletion) {
       search step <- -1*search step
     Target.Depletion <- New.Target.Depletion
   Last Achieved Catch <- Achieved.Catch
 DepletionScale <- (1-Target.Depletion)/(1-Achieved.Depletion)
```

- For MSY (raw retained catch) and Fmax (retained catch per recruit) search the value of the benchmark target is unknown
- A two stage search is needed to only include results with correct allocations in the search for MSY
- Stage one = SSB% target search
 - Stage two = search SSB% values to find SSB% that achieves MSY or Fmax

New approach to achieve multiple forecasting targets – MSY and Fmax

```
}else if (Forecast target == 2) {
 Depletion <- TimeFit3$SpawnBio/Virgin bio
 Achieved. Depletion <- median (Depletion [ (length (Depletion) -29) :length (Depletion)])
 if (First run == TRUE) {
    Target.Depletion <- Achieved.Depletion
    First run <- FALSE
 Target.Rebuild <- Target.Depletion
 if (max (abs (1-Fmult3)) > Allocation. Threshold |
    max(abs(1-Fmult2))>Annual.F.Threshold |
    max (abs (1-Fmult1)) > Depletion. Threshold) {
    loop<-loop-
    subloop<-subloop+1
    if (F max==TRUE) {
     Achieved.Catch <- sum (TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), Catch cols3])/
                        sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"])
    }else{
     Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])
    subloop<-0
    if (F max==TRUE) {
     Achieved.Catch <- sum (TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), Catch cols3])/
                        sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"])
     Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])
    MSY.Fit <- rbind(MSY.Fit[1,],MSY.Fit)
    MSY.Fit[1,] <- c(Achieved.Catch, FScale, Achieved.Depletion, Target.Depletion)
      if (Achieved. Catch < Last Achieved Catch) {
        search step <- -0.5*search step
     Target.Depletion <- Target.Depletion+search step
     min diff <- which (abs (MSY.Fit[, 4]-Target.Depletion) <0.001)
     if(length(min diff)>0){
        Old.Catch <- MSY.Fit[min diff[1],1]
        if (Old. Catch < Achieved. Catch) {
         search step <- -0.5*search step
        Target.Depletion <- Target.Depletion+search_step
        Achieved.Catch <- Old.Catch
    }else{
     steps \leftarrow seq(0.1,0.9,0.1)
     New.Target.Depletion <- steps[which(abs(steps-Target.Depletion)] [1]]
     if (New. Target. Depletion < Target. Depletion) {
        search step <- -1*search step
     Target.Depletion <- New.Target.Depletion
    Last Achieved Catch <- Achieved.Catch
```

- For MSY (raw retained catch) and Fmax (retained catch per recruit) search the value of the benchmark target is unknown
- A two stage search is needed to only include results with correct allocations in the search for MSY
- Stage one = SSB% target search
 - Stage two = search SSB% values to find SSB% that achieves MSY or Fmax

DepletionScale <- (1-Target.Depletion)/(1-Achieved.Depletion)

Validating forecast results

- All projection approaches utilize the underlying SS population model mechanics for projections
- Results for every approach are validated by comparing reported forecast outcomes to those targeted by the stock assessment analyst
- Each approach has required an increase in the computational complexity of the projection search algorithms and software
- These changes represent an ongoing effort to continuously improve the realism of forecast projections

Plug for upcoming RESTORE planning project

- A collaborative effort between Vaughan Analytics (Nathan Vaughan, SEFSC (John Walter, Kate Siegfried, Skyler Sagarese), GMFMC (Ryan Rindone), SERO (Nick Farmer)
- Phase 1: Identify the key desirable features that could be improved for a future next generation forecasting platform
- Phase 2: Collaborate with the SSC and Council to determine best approaches for incorporating the resulting advice into management
- Phase 3: Work with range of potential users to identify optimal interface complexity/capacity tradeoffs for future software development

Questions

- Forecasting function github repository: https://github.com/SEFSC/SFD-AllocationForecasting
- Email: nathan.vaughan@noaa.gov

