Gag Discard Mortality

Beverly Sauls
Fish and Wildlife Research Institute
Florida Fish and Wildlife Conservation Commission Saint Petersburg, FL

Presented to:
Gulf of Mexico SSC
September 2023

Reef Fish Surveys in Florida

- State Reef Fish Survey
- Private boat effort and catch
- Implemented in Gulf in 2015
- Also collects information on:
- Artificial reef use
- Areas fished
- Release methods (new in 2022)
- For-Hire At-Sea Observer Program
- Fishery observers ride along on headboat and charter trips
- Implemented in Gulf in 2009
- Provides:
- Species and size composition of discards
- Capture, handling and release methods
- Release condition
- Fate of discards

Oscar "Butch" Ayala, FWC

Management, Outreach, Education, Monitoring, Assessment

- Venting tool and/or fish descender device
- Required in Gulf EEZ in 2022
- Required in FL in 2023
- Return 'Em Right, ongoing since 2022
- Training and free gear distributed to 11,349 offshore anglers in first year
- 41% of private boat anglers have a descender device on board (2022)

- From state reef fish surveys in FL, AL, MS
- Expanded for-hire observer coverage
- Methods adopted in AL and MS
- Supplemented on Gulf coast of FL
- Continue monitoring impacts over time
- Data inputs for SEDARs
- Magnitude, size composition of discards
- Where, when and how fish are caught and released
- Fate of discarded fish

Reef Fish Fishery on Gulf Coast of Florida

- Anglers target reef fishes on natural hardbottom and artificial reefs
- Black dots show artificial reefs deployed by FWC as of 2018
- Distance to deep water varies regionally
- 30 and 50 m depth contours
- FL state territorial seas boundary 10 statute miles from shore
- Dotted line

Private Boat Reef Fish Effort Gulf coast of Florida (May 2016-Dec. 2017)

- Highest effort off the western Peninsula.
- Large population
- Less seasonal
- Majority of trips fish in state waters
- Panhandle 76\%
- Big Bend 61\%
- Peninsula 62\%

Cross, T., B. Sauls, R. Germeroth and K. Mille. 2018. Amer. Fish. Soc. Symposium 86: 265-277.

Reef Fish Effort on Artificial Reefs Gulf Coast of Florida (May 2016-Dec. 2017)

- 46\% of reef fish trips utilized artificial reefs.
- 50% of all artificial reef trips were in the Panhandle.
- Majority of artificial reef trips took place in State waters
- Panhandle 77\%
- Big Bend 59\%
- Peninsula 69\%

Discards are majority of recreational catch

Source: SRFS calibrated time-series, SEDAR 72

Gag Life History and Fishing Effort Intersect

Gag are vulnerable to fishing pressure throughout their life history.

- Juveniles recruit to high salinity seagrass habitat in eastern Gulf
- Recreational catch-and-release
- Sub-adults and females associate with nearshore natural hardbottom habitat
- Recreationally targeted
- Males and spawning females found farther offshore
- Commercially and recreationally targeted

observations

For-Hire Gag Observations 2009-2022

Yellow = Released alive Red = Retained or released dead

January
February

For-Hire Gag Observations 2009-2022

Yellow = Released alive Red = Retained or released dead

For-Hire Gag Observations 2009-2022

Yellow = Released alive Red = Retained or released dead

September
October

Private Boat Landings and Discards by Area Fished

200,000
150,000
100,000
50,000

[^0]

Fishery-Dependent Discard Mortality Study

Relative survival of gags Mycteroperca microlepis released within a recreational hook-and-line fishery: Application of the Cox Regression Model to control for heterogeneity in a large-scale mark-recapture study

Beverly Sauls ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 100 Eighth Avenue SE, Saint Petersburg, FL 33701, USA ${ }^{\text {b }}$ University of South Florida, College of Marine Science, 140 7th Avenue S, MSL 119, Saint Petersburg, FL 33701, USA
Fisheries Research 150 (2014) 18-27

Objectives

1. Develop methods to rapidly assess condition of discards directly observed in a large-scale recreational fishery.
2. Develop a survival effects model to estimate relative survival of gags released in different conditions.
3. Estimate the portion of gag discards that die under conditions experienced within the fishery.

Cooperative Research

- June 2009-December 2012
- West coast of Florida
- Recruited >160 for-hire vessels
- Vessels selected year round to carry an FWC observer

Study Area

Observed Discards

- Directly observe fish as they are being caught
- Discards marked with Hallprint plastic dart tags
- FWC Tag Return Hotline
- REWARD

Observed Discards

- Depth
- Size
- Hook location
- Mouth, throat, gut, gill, foul
- Gill injury
- Barotrauma symptoms
- Swollen bladder
- Everted stomach or intestines
- Exopthalmia
- Vented or unvented
- Surface swimming behavior
- Immediately submerged
- Disoriented, then submerged
- Floating

Release Condition

- GOOD
- Immediately submerged without venting
- No internal hook injuries or visible gill injuries
- FAIR

- Did not immediately submerge, OR
- Submerged with venting
- No internal hook injuries or visible gill injuries
- POOR (one or more impairments)

- Remained floating at surface
- Suffered internal hook injuries
- Suffered visible gill injuries

Note: descending device use was rare and not observed during this study

Mark-Recapture Model

- Fish were tagged year-round, over multiple years, and over a large geographic area.
- Fishing effort varied:
- Regionally
- Annually
- Seasonally
- Discards of all sizes tagged

Small tagged red grouper.

- Robust model needed to
- control for potential confounding factors
- detect significant differences under highly variable conditions in the fishery

Survival Effects Model

Survival Effects Model

- For the overall population of tagged fish, we know the cumulative distribution of reported recapture events
- Let T = time until an individual fish was reported as recaptured

$$
F(t)=\operatorname{pr}(T<t)
$$

- Unreported fish:
- Tag loss
- Non-reporting
- Movement
- Mortality

Survival Effects Model

- Probability of being reported as a recapture can be expressed as a timespecific rate by the hazard function:

$$
\mathrm{h}(\mathrm{t})=\lim _{\Delta \mathrm{t} \gg} \frac{\mathrm{pr}(\mathrm{t}<=\mathrm{T}<\mathrm{t}+\Delta \mathrm{t} \mid \mathrm{T}>=\mathrm{t})}{\Delta \mathrm{t}}
$$

- Explains variability in recapture reporting rate with high precision
- Controls for more variability than a simple percentage

Proportional Hazards Regression Model

- A simple example:
- $x=0$ if released in good condition
- $x=1$ if released in poor condition
$h(t \mid x)=h_{0}(t) * \exp (\beta x)$

- When $x=0, h(t)=h_{0}(t)$
- Risk of a recapture event for individuals in reference group
- When $x=1, h(t)=h_{0}(t)$ * $\exp (\beta)$
- Proportionate increase/decrease in risk for individuals with characteristic x

Proportional Hazards Regression Model

- When each individual tagged fish has one or more covariates ($\mathrm{x}_{1} \ldots . \mathrm{X}_{\mathrm{k}}$):
$h\left(t \mid x_{1} \ldots x_{k}\right)=h_{0}(t) * \exp \left(\beta_{1} x_{1}+\ldots \beta_{k} x_{k}\right)$
$\log h\left(t \mid x_{1} \ldots x_{k}\right)=\log h_{0}(t)+\beta_{1} x_{1}+\ldots \beta_{k} x_{k}$

Proportional Hazards Regression Model

- The ratio of hazards for two groups:
$\mathrm{h}_{\mathrm{i}}(\mathrm{t}) / \mathrm{h}_{\mathrm{j}}(\mathrm{t})=\exp \left(\beta \mathrm{x}_{\mathrm{i}}\right) / \exp \left(\beta \mathrm{x}_{\mathrm{j}}\right)=\exp \left(\beta\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)\right)$
- Note $h_{0}(\mathrm{t})$ cancels out
- Ratio is constant over time (proportional)
- Measures relative survival

Model Inputs

- Event: 1 if recaptured, 0 if not recaptured
- Time: number of days from date tagged to date recaptured or censored
- Explanatory variable of interest
- Release condition (good, fair, poor)
- Control variables
- Month of entry into study (class)
- Region fish was released (class)
- Fish length at time of release (continuous)
- Depth of capture at time of release (continuous)
- Interaction terms
- Stratification
- Year tagged

Results

Observed Gag Discards

PH=panhandle, TBN=Tampa Bay nearshore, TBO=Tampa Bay offshore (multi-day trips), $\mathrm{BB}=$ Big Bend

Mean Capture Depth for Discards

Gag Discard Impairments

Effects of Size,

 Depth- Gags released in good condition (category 1) were:

- Smaller (top graph)
- Caught shallower (bottom graph)

Proportional Hazards Model

Forward selection	d.f.	Chi- square	\boldsymbol{p}
Region	2	20.995	<0.0001
Month	11	20.895	0.035
Length	1	4.098	0.043
Length*month	11	24.301	0.012
Release condition	2	7.896	0.019

Relative Survival

Comparison	Hazard Ratio	95\% CI	Chi- square	p
Fair (2) vs. Good (1)	0.664	$0.47,0.94$	5.32	0.021
Poor (3) vs. Good (1)	0.506	$0.26,0.98$	4.11	0.043
Fair (2) vs. Poor (3)	1.314	$0.67,2.59$	0.62	0.430

Depth-Dependent Discard Mortality

Depth (m)	Number Observed			Portion That Die (1-survival)			Total Deaths
	G	F	P	G	F	P	G+F+P
1-10	N1	N2	N3	$\begin{aligned} & \text { M1 }= \\ & ? \end{aligned}$	$\begin{aligned} & \text { M2 }= \\ & 1-0.66 \end{aligned}$	$\begin{aligned} & \text { M3 }= \\ & 1-0.51 \end{aligned}$	$\begin{aligned} & \text { (N1*M1)+(N2* } \\ & \text { M2)+(N3*M3) } \end{aligned}$
11-20							
21-30							
31-40							
41-50							
51-60							
61-70							

Good Condition Group (M1)

- No true control to use as reference for good condition category
- Assume mortality >0, expected to be low
- Impaired fish excluded from good condition group
- 79% released in depths ≤ 30 meters
- Assigned based on literature review
- Point estimate = 7.5\%
- Upper and lower range of 0-15\%

Depth-Dependent Discard Mortality

Number observed

Estimated deaths

Depth-Dependent Discard Mortality

Conclusions

- Majority of gags:
- Caught in <30m
- Submerged without venting
- Released in good condition
- For gags not released in good condition:
- Caught in deeper depths
- More frequently vented
- Discard mortality increased significantly with depth
- Overall discard mortality lower than previous estimate from SEDAR 10

Future Work

- SRFS and for-hire at-sea observer programs granted recurring state funding in 2020
- Continued long-term monitoring allows us to:
- Evaluate impacts of changes in fishing regulations
- Increased harvest restrictions on gag
- Longer red snapper seasons in state and federal waters
- Increased use of descender devices
- Provide additional data and analyses for assessments
- Potentially update mark-recapture model to evaluate conservation benefits of increased descender device use
- Continue researching differences between SRFS and MRIP and understand sources of bias

Thank you!

- For-Hire Industry
- Recreational Anglers
- FWRI Fisheries Dependent Monitoring

Funding and support: USE UNIVERSITY OF

	A) Panhandle	B) Tampa Bay nearshore	C) Tampa Bay offshore	D) Big Bend
Numbers of fish tagged:				
Condition 1 (\%)	294 (43.43)	2,435 (94.02)	180 (33.96)	146 (93.00)
Condition 2 (\%)	355 (52.44)	83 (3.20)	287 (54.15)	3 (1.91)
Condition 3 (\%)	28 (4.14)	72 (2.78)	63 (11.89)	8 (5.10)
Numbers of fish recaptured:				
Condition 1 (\% tagged)	46 (15.65)	217 (8.91)	19 (10.56)	10 (6.85)
Condition 2 (\% tagged)	42 (11.83)	4 (4.82)	26 (9.06)	0
Condition 3 (\% tagged)	4 (14.29)	3 (4.17)	3 (4.76)	0
Mean length (mm midline)	522.65 ± 117.14 (a)	462.77 ± 87.49 (b)	584.98 ± 105.20 (c)	532.24 ± 82.99 (a)
Mean capture depth (m)	29.76 ± 7.44 (a)	18.18 ± 7.45 (b)	41.10 ± 10.97 (c)	20.60 ± 3.44 (b)
Number of trips:				
Single-day charter	99	127	-	-
Directed red snapper charter	72	-	-	7
Single-day headboat	47	129	-	-
Multi-day headboat	-	-	37	-

State Waters

[^0]: 1357911135791113579111357911136810122468101224681012 2016

 2017
 2018 2019 2020 2021 2022

