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A B S T R A C T   

The natural mortality rate M is a key parameter in estimating the productivity of a fish stock. However, it is quite 
difficult to estimate given its correlation with other parameters, variation in processes governing population 
dynamics and data acquisition, as well as other factors such as ageing error. Meta-analytical approaches relating 
M to other life history parameters are often used to provide an estimate and/or Bayesian prior for M. Longevity is 
the one of these life history parameters most directly related to M. The maximum observed or estimated age 
serves as a proxy for longevity in predicting, or developing a prior for, M to be used within a stock assessment or 
other population model. Consideration of the age data and factors that might influence its quality for deter-
mining a maximum age is important in using a meta-analytically derived relationship between maximum age and 
M, though these factors are not completely absent from the data used to develop that relationship. Here, we 
discuss these issues, propose a relationship between maximum age and M, and develop an updated prior for M 
based upon maximum age.   

1. Introduction 

The natural mortality rate M associated with a fish stock is an 
important parameter in characterizing its productivity and dynamics, 
and errors in its estimation can have substantial effects on stock 
assessment and management (Punt et al., 2021). However, estimating 
the value of M is a consistently difficult proposition, as monitoring a fish 
cohort for its lifetime, especially when the species is long-lived, is 
impractical. M can be estimated within an assessment (Lee et al., 2011), 
directly from demographic (e.g. catch curve; Beverton and Holt, 1956; 
Quinn and Deriso, 1999) or tagging (or mark-recapture) data (Seber, 
1982; Brownie et al., 1985), or indirectly from life-history parameters 
such as longevity or growth (e.g. Pauly, 1980; Hoenig, 1983; Ken-
chington, 2014; Hamel, 2015; Then et al., 2015; Hoenig et al., 2016; 
Maunder et al., in this issue; Cope and Hamel, in this issue). Here we 
consider meta-analytical methods using life history parameters that 
correlate with M to develop an approach to provide a point estimate and 
prior distribution (Hamel, 2015) for M that has broad applicability 
across animal taxa. While some approaches (e.g. Lorenzen, 2000; 
Gislason et al., 2010) attempt to provide estimates of M that can vary at 
age and/or size, the majority of stock assessments use the simplifying 

assumption of a single value of M or one value for each sex, representing 
the average mortality across time and ages beyond some minimum age 
(the youngest, smallest fish likely have higher M values but for many 
species are not seen in substantial numbers in fishery catches, and thus 
early mortality can be accounted for by estimating “recruitment” to a 
stock at a more advanced age). Confounding of trends in M with age and 
variability in M across time with other life-history and fishery processes 
leads to the necessary use of simplifying assumptions, including, often, a 
single value of M (Punt et al., 2021). 

A wide variety of direct, indirect and theoretical approaches for 
estimating M have been developed and employed over the years (see 
reviews in Kenchington, 2014; Maunder et al., in this issue). Among 
these are those based on meta-analyses of observed relationships be-
tween other estimated life history parameters and M (e.g. Cope and 
Hamel, in this issue). These life history parameters include size and 
growth parameters (e.g. von Bertalanffy k (growth rate coefficient), t0 
(theoretical age at length = 0), and L∞ (asymptotic size)) and those 
related to maturity, reproduction, and longevity. Estimates from these 
relationships can be used to fix M in a base model or sensitivity analysis 
within an assessment, or to provide a prior distribution of M (Hamel, 
2015; Cope and Hamel, in this issue). 
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Analysis of the relationship of M to various other life history pa-
rameters has been applied to particular taxonomic groups (e.g. Bev-
erton, 1992), fish in general, or even to a combination of fish and other 
species (e.g. Hoenig, 1983). It has been argued that each of these re-
lationships is dependent on taxonomy to a greater or lesser extent. For 
example, Beverton (1992) argued that the M/k relationship varied over 
an order of magnitude across differing taxa. 

The longevity of, or maximum age achieved by, a species should be 
related closely to the natural mortality rate. Theoretically, given an 
exponential decay in population numbers, the probability of continued 
existence at any age is non-zero. In reality, older individuals experience 
senescence and increased M. Thus, while the relative timing and severity 
of senescence varies, the impact of this variability is small relative to the 
impact of M itself, and thus M is a good predictor of maximum age 
(Dureuil and Froese, 2021). Other factors such as the impacts of fishing, 
as modified by selectivity and refugia, and ageing error can affect the 
observed or estimated maximum age, and should be considered (Hoenig, 
2017). However, compared to other life history parameters, maximum 
age is expected to have a more consistent relationship with M across 
taxa, and therefore is a better predictor of M (Beverton, 1992; Then 
et al., 2015). Here we provide an updated estimator that applies a pre-
vious method of constructing priors (Hamel, 2015) with a corrected 
application of a valuable database (Then et al., 2015; based on careful 
review of the origin of literature values as well as new analyses, sub-
stantially revising previous databases from Pauly, 1980; Hoenig, 1982; 
and others) on maximum observed or estimated age (Amax; closely 
related to, but not identical, to “longevity” being the actual lifespan, 
which is unobservable) and M estimates to build a better relationship 
(both in central tendency and variability) between maximum age and M. 

2. Theory of M to maximum age relationship 

To develop the theoretical relationship between Amax and M, certain 
consistent assumptions are necessary. These include the assumptions 
that Amax represents longevity, M is constant from some relatively early 
age, Ainit, until the age at which senescence causes a rapid increase in 
that parameter, and that, across species, senescence, leading to a sub-
stantial increase in the natural mortality rate, occurs at an age, Asen, 
when M would lead to the same proportion (Ca) of a cohort size (at Ainit) 
remaining. With the additional assumption that the maximum age 
observed, Amax, is a constant multiplier (by a factor of just over 1.0) of 
Asen (i.e,Amax = β1Asen), and Ainit is also a constant proportion of Amax (i. 
e., Ainit = β2Amax), 

Ca = e− (Asen − Ainit)M (1)  

or, with substitution: 

Ca = e
−

(

1
β1

− β2

)

AmaxM
(2)  

and, equivalently: 

Cb = e− AmaxM (3)  

from which follows: 

C = MAmax (4)  

and, rearranging: 

M =
C

Amax
(5)  

where β1, β2, Ca, Cb (= Cae

(
1

β1
− β2

)

), and C (= -ln(Cb)) are constants. Eq. 
(5) is referred to as the one-parameter Amax equation for M. Eq. (5) can 
also be written as: 

ln (M) = c − ln (Amax) (6) 

Of course, all of the assumptions in the theoretical relationship are 
not strictly met in all cases, leading to variation in the relationship be-
tween M and Amax across species and stocks. 

2.1. Estimating the relationship between maximum age and M requires 
log-transformed values 

It is very common to build relationships between Amax and M by 
regressing the two values across many taxa. It is also common to esti-
mate M using the slope of log-transformed numbers at age. In a basic 
age-structured population dynamics model, it is shown that M is an 
exponential rate parameter. Another way to think of this is not that M 
changes but that the time scale to which it applies changes with 
longevity. Thus rate parameters scale with time, as does their variability, 
and log-transformation eliminates the heteroscedasticity that occurs in 
real space. While minor heteroscedasticity may not cause substantial 
issues with regression analyses, in this case the heteroscedasticity is 
severe, as seen in Fig. 1. In addition, Eq. (6) implies a linear relationship 
between ln(M) and ln(Amax). We therefore recommend assuming geo-
metric error and to log-transform both Amax and M prior to any regres-
sion analysis. 

Then et al. (2015) provided estimates of M and related life history 
parameters across a large number of fish species as an update to the 
original Hoenig (1983) analysis that developed an M estimator for fish 
species in general. After conducting a number of regression analyses 
relating M to covariates, in real and log-transformed space, Then et al. 
(2015) recommended M estimates be based on maximum age alone 
(assuming maximum age is known). Their recommended relationship is 
based on an updated non-linear least squares (NLS) estimator, M =

4.899A− .916
max (Using Amax here for consistency, rather than tmax, which 

was used in Then et al., 2015). 
There are two issues with the analyses conducted by Then et al. 

(2015). In fitting the alternative model forms relating M to Amax, they 
did not consistently apply the lognormal transformation. In particular, 
in real space, one would expect substantial heteroscedasticity in both the 
observation and process error associated with the observed relationship 
of M to Amax (see Fig. 1). Both the one-parameter Amax (Eq. (5)) and Then 
NLS models are fit in real space, giving too much weight to short-lived 
species and very little weight to long-lived species. The consequence 
of this is that, given limited flexibility, the shape of the relationship will 
be driven by data from species with high M and short lifespans. The 
model fit comparisons made by Then et al. (2015), and in particular the 
Cross Validation Prediction Error (CVPE), were made in real space, 
essentially ignoring poor relative fits to small M values and giving too 
much weight to absolute fits to large M values. Whether viewed in log 
space (Fig. 2) or real space (Fig. 3), the fit to the data is clearly biased 
high (whether considering the mean or the median of the data) for 
longevities greater than 50, and somewhat for ages between 20 and 50. 
This is due to the fact that the shape of the curve is driven the high 
number of data points with longevities between 5 and 10 years (Fig. 3) 
rather than being an intrinsic property of their approach. To evaluate the 
fits of the alternative methods using CPVE, one should compare the 
CPVE in log space rather than in real space, so that each point is given 
equal weight in properly considering relative error. 

2.2. An updated approach to construct an estimate and prior for the 
natural mortality rate 

Hamel (2015) developed a method for constructing a prior on M by 
combining a suite of estimators, and demonstrated the method using 
relationships to life history parameters such as longevity, size, growth 
rate and reproductive effort. Using the analytical approach shown in 
that paper to reevaluate the data used in Then et al. (2015) through 
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fitting the one-parameter Amax model under a log-log transformation, 
which requires forcing the slope to be − 1 in the transformed space (Eq. 
(6); The analytical approach used in Hamel, 2015; Figs. 2 and 3), the 
point estimate for M is: 

M =
5.40
Amax

(7) 

The coefficient of 5.40 is larger than the value of 5.109 found in Then 

et al. (2015) when using untransformed data or that found by Hamel 
(2015) of 4.37 using the much older and smaller data set from Hoenig 
(1983), under log transformation. It is also larger than either the rule of 
thumb value of 3.0 (e.g., Rugolo et al., 1998; which involves rather 
arbitrarily setting Cb = 0.05 (which can be thought of as having 5% of 
the cohort remaining at Amax)) or the 4.22 suggested by Hewitt and 
Hoenig (2005) by simply setting the not quite unitary exponent from 
Hoenig (1983) to 1.0, without refitting. The value of M in Eq. (7) is the 

Fig. 1. Residuals between M values from database and those predicted from the Then NLS and Hamel & Cope models in real space (top) and natural log 
space (bottom). 

Fig. 2. Comparison of NLS model from Then et al. (2015) and the Hamel & Cope model fit to the same data, displayed in log-log space.  
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median of the proposed prior on M. The point estimate represents the 
median instead of the mean of the prior in order to provide a risk neutral 
estimate for stock assessment, such that half of the probability density is 
above, and half below, the point estimate. 

The residuals (in log space) around this new one-parameter rela-
tionship (Eq. (7)) are far closer to being homoscedastic than the real- 
space residuals around the Then NLS formulation (Fig. 1). The distri-
bution of log-space residuals around Eq. (7) appear reasonably close to 
normal (Fig. 4), while the log-space residuals around the Then NLS 
formulation appear similarly close to normal but not centered around 
zero. 

The prediction interval is typically defined using the standard devi-
ation of the data around the regression line in log-transformed space (see 
Hamel, 2015 for equations). Recall, however, that the regression is not 
relating longevity to M, but rather an estimate of longevity to an esti-
mate of M. What we want to have for both prediction intervals and priors 
is the expected range of actual M given Amax, which is an estimate of 
longevity. Therefore, it is necessary to take into account the error in the 
estimates of M used in the meta-analysis. That is to say, in order to 
predict M, and given that we do not have perfect estimates of longevity, 
we need to evaluate the relationship between the estimate of longevity 
and the “true” M (admitting even this represents some average over time 

and age). In other words, we would like to remove the variance due to 
error in the values of M used in the meta-analysis. 

The natural log-space standard deviation around the relationship 
defined in Eq. (7) is 0.44, which combines sources of error in both Amax 
and M. Since we do not know the error due to estimates of M used in the 
Then et al. (2015) meta-analysis nor that due to errors in estimates of 
Amax or due to the actual variation in the longevity to M relationship 
among species and stocks, we make the assumption that half of the 
observed variance is due to errors in estimating the values of M in the 
database. We chose half of the variance given that M is more difficult to 
estimate than Amax (otherwise we would not need or use the 
meta-analytical approach), while we expect both errors in M estimation 
and variation in the actual relationship to be substantial. This assump-
tion results in a prior defined as a lognormal distribution with median 
(or mean in log-space) = 5.40/Amax, with a standard deviation in 
log-space = 0.31 (i.e. 0.44 divided by 

̅̅̅
2

√
; this is equivalent to a 

log-space variance of 0.097). This prior replaces previously published 
priors based upon maximum age, including that from Hamel (2015), 
which, when using maximum age alone, provided a lognormal prior 
with a median = 4.37/Amax and a standard deviation in log-space 
= 0.51. Thus the refined prior is both tighter and shifted higher (Fig. 5). 

Fig. 3. Comparison of NLS model from Then et al. (2015) and the Hamel & Cope model (both in its original median-unbiased form, and in a mean-unbiased form 
(“HC mean unbiased”)) fit to the same data, plotted in real space across two ranges of maximum age. 
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3. Does sample size of aged individuals matter? 

Obtaining an accurate estimate of maximum age is not a simple 
undertaking. The idea of relating M to longevity dates to at least the 
middle of the 20th century (e.g. Beverton, 1963), while the debate 
around including sample size in relating M to Amax has been around just 
as long. Holt (1965) developed a relationship between constant 
age-invariant mortality rate, constant recruitment size, and expected 
maximum age (with the notation used here): 

Amax =
ln(n) + 0.577

Z
+ Ainit (8) 

with Z = total mortality rate and n = number of individuals at Ainit. 
Hoenig (1983) developed an approximation to expected maximum age 
given a sample size n and constant mortality rate and knife-edged 
selectivity (i.e. assuming all ages that are caught in the fishery are 
equally likely to be caught; other selectivity assumptions would require 
a modification to the equation, but not change its general form), and 

arrived at an equation: 

Amax ≈
ln(2n + 1)

Z
+ Ainit (9) 

that provides results similar to those of Holt (1965) given equivalent 
samples sizes, particularly when those sample sizes are large. Ken-
chington (2014) challenged the validity of these formulations, and came 
up with an alternative relationship 

Amax =
ln(2Zne + 1)

Z
+ Ainit (10) 

(replacing n by ne to represent effective sample size, though that 
caveat would apply to Hoenig’s equation as well). However, Ken-
chington’s calculation was based upon flawed logic. In his formulation, 
Nt represents the expected number observed at any age t given a sample 
size n, constant M among selected ages, and knife-edged selectivity. In 
particular, he states that the expected maximum observed age “can be 
approximated as the age at which Nt = 0.5, as about half of all trials 

Fig. 4. Residuals in log-space for Hamel & Cope and Then NLS formulations. A normal (μ = 0, sd = 0.44) distribution, matching the observed sd for the Hamel & 
Cope analysis, is shown for comparison. 

Fig. 5. Example of Hamel & Cope and Hamel (2015) Bayesian prior forms for a maximum age value of 10 (median M values of 0.54 and 0.44 respectively). The 
Hamel and Cope formulation eliminates unrealistically small and large values of M (95% interval of (0.29, 0.99) vs. (0.16, 1.19) for the Hamel, 2015 formulation). 
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should return higher values and half lower.” However, his statement is 
clearly false. The correct formulation would state that the expected 
maximum observed age can be approximated as the first age beyond 
which the sum of Nt is less than or equal to 0.5, or: 

∑∞
i=t+1Ni ≤ 0.5. Using 

this formulation, one recovers the equation found by Hoenig (1983). 
Hoenig (2017) provided numeric evidence of this, though using the 
simple analytical approach we describe above allows one to arrive at the 
same conclusion using nothing but pencil and paper. 

Observed longevity should occur when one expects about half a fish 
to be older than that age. This is under the assumption of constant M 
across ages, when, in fact, we know that M does increase at some point 
due to senescence (Dureuil and Froese, 2021), and therefore the number 
of older fish is more limited than that formula would suggest, and the 
impact of more samples is likely to be small in terms of finding older fish. 

Hoenig (2017) went on to suggest that sample sizes (beyond some 
minimum) need not be considered, since (1) expressions including 
sample size “may not be robust to failures of the parametric assump-
tions, (2) it is often difficult or impossible to determine the effective 
sample size, and (3) new estimators may not be needed because of the 
insensitivity of the maximum age to sample size”. A number of factors 
are problematic in assuming a strict sample size relationship to Amax 
given M, including fishery selectivity, increased M to due senescence, 
recruitment variability, ageing error and fishing history (Hoenig, 2017). 
Subpopulations with different fishing (and/or recruitment) histories and 
fishery selectivity, refugia including protected areas, and migratory 
patterns among subpopulations could all lead to non-homogeneity by 
sampling location and method in expected observed Amax in any year. 
Thus including sample size in the relationship between Amax and M is not 
seen as useful in general. 

3.1. How to measure/estimate maximum age for use in estimating M 
through the meta-analysis 

It is important to recognize that the data used for the meta-analyses 
suffers from the same issues of ageing error, selectivity, recruitment 
variability, and error in estimates of covariates, including Amax. If we 
had perfect data on each of these things, then we could estimate M 
within the assessment model (e.g. Lee et al., 2011). Since we do not, the 
approach of using the results of meta-analyses to provide a point esti-
mate and/or prior for M is appropriate. A question remains, however, 
about when to reject the observed maximum age and use an alternate 
estimate of Amax for estimation of M and when to turn to other methods 
or life-history covariates altogether. There do exist situations, such as 
where there has been an ongoing period of sustained heavy fishing 
pressure and inadequate or no age sample estimates from prior to that 
period (Barnett et al., 2017; Berkeley et al., 2004), sampling that only 
targets younger/smaller fish, unvalidated ageing structures (Bishop 
et al., 2006), or where ageing error or bias is severe and unresolvable (e. 
g. Taylor et al., 2013) such that a reasonable estimate of Amax may not be 
achievable. While some of the maximum age values in Then et al. (2015) 
data set may have been impacted by fishing, one expects the vetting 
process to have removed those where fishing had a large impact. 
Therefore the relationship found here may be most appropriate in cases 
where there has been a small impact of fishing, while also being well 
suited for cases with no fishing impact to moderate fishing impact. 

Errors in estimates of Amax can occur due to errors in species iden-
tification and data entry, as well as ageing error, and therefore it is 
important to consider whether there are obvious outliers in the data, as 
well as if ageing error may be biasing the ages. One approach would be 
to use some consistent percentile of the aged sample in an attempt to 
address both outliers and ageing error, however this could result in a 
substantial shift in the perceived maximum age, and was not a procedure 
generally used for the Amax values used in the meta-analysis itself 
(though what the procedures were, exactly, is not documented). It 
would be better to evaluate the data and look for obvious outliers, as 

well as consider if ageing error is unusual for the species or stock under 
consideration. 

Ageing error undoubtedly occurred in the data used for estimating 
Amax in meta-analyses, including the Then et al. (2015) data set used 
here. Therefore, this should not be an issue to consider, except in the 
case of extreme ageing error or obvious outliers, and especially if an age 
cannot be reconfirmed. 

Note that while ageing error tends to increase for the oldest fish, it is 
also more likely that the estimated ages for the oldest fish would be 
biased low due to the greater difficulty in discerning individual bands 
for older fish that are no longer growing or growing very slowly. Thus 
we recommend removing only clear outliers that would not be expected 
given the other observed ages, while more commonly the oldest esti-
mates may be influenced by ageing error but no more so than the oldest 
estimates in the data set used to develop the meta-analytical relation-
ship. While double-reading of age structures can identify variability (or 
imprecision) in age estimates, and relate this to age, validation methods 
can identify bias in ageing (Campana, 2001). In particular, bomb 
radiocarbon ageing validation can measure bias in ageing of older fish 
by evaluating those with estimated birth years in or near the 1960s 
(Hamel et al., 2008). 

In order to determine whether and which value of Amax to use to 
estimate M (or a prior for M), one should: 1) consider whether there is 
sampling bias or fishing impacts that would preclude collecting in-
dividuals representative of the longevity of a stock, or require larger 
sample sizes; 2) consider whether there are adequate ages available to 
represent the ages in the sampled population (hundreds of samples or 
more (Hoenig, 2017)); 3) check for outliers that could be due to species 
misidentification or data entry errors, including ones that appear out of 
the distribution of ages; 4) consider if there is evidence of unusual ageing 
error or bias, consulting or conducting age validations if available. 

We do not generally recommend attempting to extrapolate 
maximum age, or to use a proxy, or otherwise discern maximum age 
from some other method, unless this modifies the highest observed age 
only modestly. Rather, it is generally better to use the data available to 
more directly estimate M and its uncertainty, whether through alter-
native meta-analyses, within a stock assessment, or directly observing 
relative numbers-at-age. 

3.2. How does estimating M from Amax compare to using other life history 
parameters? 

Meta-analyses have been undertaken for a wide variety of life-history 
parameters to predict M (see reviews in Kenchington, 2014; Maunder 
et al., this issue). For example, the relationship between the von Berta-
lanffy growth parameter k and M has been analyzed multiple times. 
Beverton (1992) suggested that the relationship would vary greatly 
across taxa. Jensen (1996) used Pauly’s (1980) data set to provide an 
estimate of M = 1.6k by regressing the untransformed data, while 
making the incorrect assertion that R-squared values are comparable 
across transformations. Then et al. (2015) made the same error of con-
ducting the meta-analysis of their data without transformation, arriving 
at a value of M = 1.692k. Hamel (2015) log-transformed Pauly’s data 
and found M = 1.753k. Here, we reanalyze the larger dataset from Then 
et al. (2015) under transformation and find: 

M = 1.55k (11) 

Here, the log-space standard deviation is around the estimate = 0.90. 
In order to develop prediction intervals and priors for M itself, we need 
to decompose the variance to remove that due to errors in the estimation 
of M values used in the meta-analysis, as we did for the Amax to M 
relationship above. Having already calculated variance due to estima-
tion of M in the Amax relationship from the same data set, we use that 
same value of variance associated with errors in those M values calcu-
lated above (0.097). Accounting for this results in a modified log-space 
standard deviation of 0.85 to be used for prediction intervals or priors 
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for M given k. Therefore, while the raw log-scale standard deviation for 
the k to M relationship is over twice that for the Amax to M relationship, 
the values remaining after correcting for the estimation errors in M, 
making the same correction to each standard deviation, differ by a factor 
of nearly three (0.85/0.31). The resultant prediction intervals and prior 
for M using k are therefore far wider than the prior using longevity. A 
95% prediction interval for M given Amax would be bounded by the point 
estimate multiplied and divided by 1.8, whereas for M given k, the factor 
would be 5.3. This is as expected, given body growth is at least a degree 
removed from M compared to longevity, thus resulting in a larger ex-
pected and observed variation among taxa in the relationship between 
these two parameters (e.g. Beverton, 1992) and the actual variation in 
the observed relationship between estimated k and estimated M. 

If we compare variances around relationships using log-transformed 
M, we see that most meta-analytical approaches, whether using a single 
or multiple covariates, lead to high variances (e.g. Peterson and Wro-
blewski, 1984; Jensen, 1996 (0.90*); Gunderson, 1997 (0.43*); Gislason 
et al., 2010 (0.72); * as calculated in Hamel, 2015) with raw standard 
deviation values generally being greater than the 0.44 for the relation-
ship derived here for the relationship between Amax and M (with an 
exception for Gunderson’s gonadosomatic index, which provides a 
similar variance). This is likely due to greater variability in the rela-
tionship of most other covariates and M, including greater variability 
across and within taxa (Beverton, 1992) and ecosystems (Lorenzen, 
1996), as well as more difficulty in estimating other covariates 
compared to longevity. 

Kenchington (2014) suggested that his estimator was better than 
others, since for 10 of the 11 finfish he considered, estimates from his 
estimator were roughly within half to double of “true” value. However, 
that was, in fact, also the case for Hoenig’s (1983) estimator. If one 
chooses a more restrictive, and therefore informative, geometric range, 
only 4 of 11 estimates using Kenchington’s method were within 
two-thirds and three-halves of the “true” values, while 8 of 11 estimates 
were within that range for Hoenig’s method. Moreover, estimates based 
upon the longevity-based method presented here are within that nar-
rower range for 10 of 11 species considered by Kenchington. By this 
measure, then, the estimator presented here performs by far the best. 

4. Conclusions 

Then et al. (2015) provided a valuable updated dataset of M and Amax 
and other life history values, but misapplied the variance form in con-
structing the predictive relationships. Here we correct those relation-
ships. In theory, maximum age and M should be closely and inversely 
related, more so than other commonly measured life history values, and 
our analysis shows that the data support this conclusion (Figs. 2 and 3). 
These updated relationships provide point estimates and priors for M for 
use in stock assessment and other uses, emphasizing the importance of 
log-transformation of the data prior to analysis. We recommend using 
this approach whenever reasonable estimates of Amax are available, 
though we also note the challenges in obtaining maximum age esti-
mates. We also present an updated relationship for k and M when 
maximum age is not obtainable, though note the larger expected vari-
ance in that relationship when constructing M priors for modeling 
application. See Maunder et al. (in this issue) for additional review and 
recommended approaches and Cope and Hamel (in this issue) for an 
estimation tool that includes the new formulations. 
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