

A new search approach to improve the accuracy of stock assessment forecasts

GMFMC SSC meeting, Sept 27, 2021

Nathan Vaughan

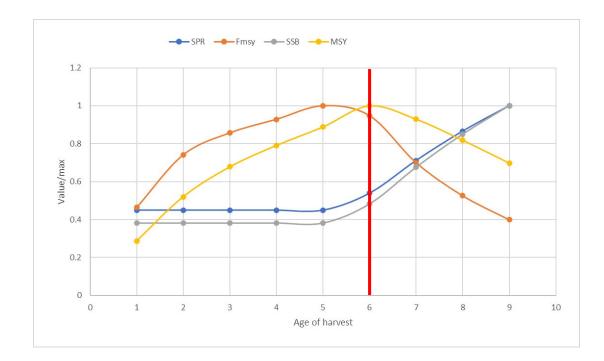
Vaughan Analytics in support of SEFSC, NOAA, Miami, FL

Stock assessment forecasting: Achieving multiple objectives

- Achieve target benchmarks for yield or stock status such as MSY or SPR30%
- 1. Estimate the F that achieves benchmarks at equilibrium (F_{OFL})
- 1. Project fishery at $F = F_{OFL}$ (or an alternative target) in every year
- 1. Project with catch fractions between fishing sectors equal to regulated allocation fractions.
- 1. Project with annual fleet specific effort held constant between fleets within allocated fishing sectors.

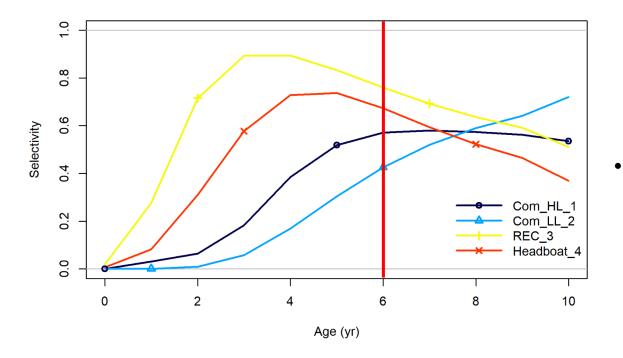
Stock assessment forecasting: Achieving multiple objectives

SSB	2471	2652	2813		3179
SSB/SSB _{TARGET}	0.78	0.83	0.88		1
F _{TOTAL}	0.242	0.242	0.242		0.242
$\textbf{Yield}_{\text{TOTAL}}$	953	1014	1063		1162
$\substack{ \text{Yield}_{\text{S1}} \\ \text{Yield}_{\text{S2}} }$	257 696	274 740	287 776		314 484
F ₁ F ₂ F ₃ F ₄	0.177 0.018 0.558 0.010	0.173 0.018 0.548 0.010	0.171 0.017 0.543 0.010	···· ···· ···	0.167 0.017 0.539 0.010
	Year₁ 2022	Year ₂ 2023	Year ₃ 2024		Year ₁₀₀ 2119

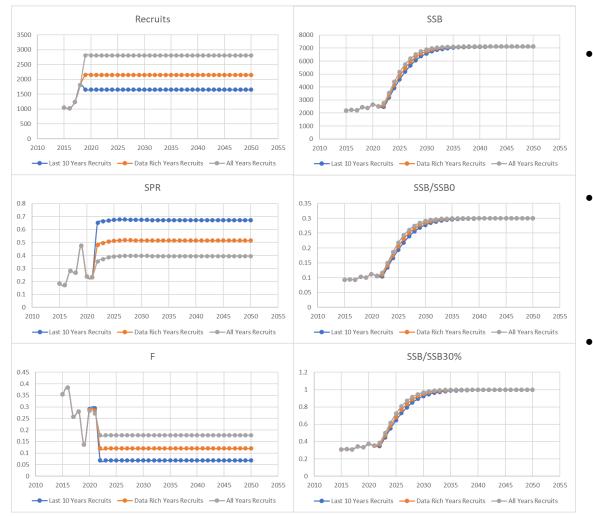


Stock assessment forecasting: Influential assumptions

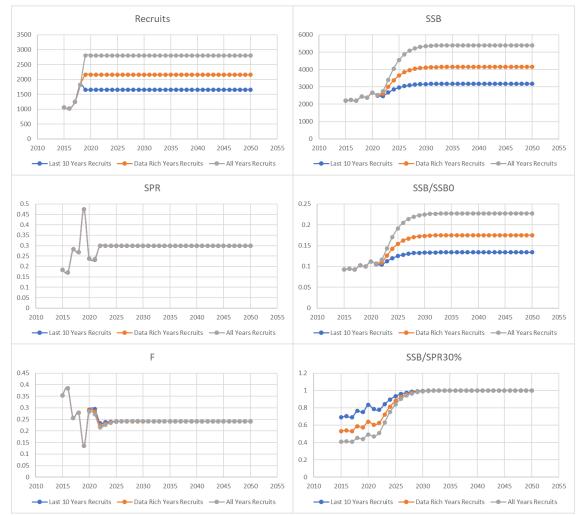
- 1. Future recruitment patterns define stock productivity and variability (Recent mean, S/R curve, deviations)
- 1. Fleet selectivity and retention functions (recent or upcoming size limit regulations)
- 1. Fishing sector allocations (adjusting catch fraction between fleets adjusts the aggregate fishery selectivity)
- Benchmark targets SSB/SSB0 or MSY vs SPR or Fmax (Raw SSB or MSY are intuitive but can produce variable F_{OFL} results while SPR and Fmax produce stable F results but could have unintended impacts)


Benchmark dependence on forecast assumptions – Global MSY

- Global MSY search example
- SPR, F_{MSY}, SSB, MSY achieved when only a single age class is harvested
- In practice fisheries represent a weighted average of these results based on fleet selectivity and allocations


Benchmark dependence on forecast assumptions – Fleet Selectivity

- As seen in global MSY calculations, the age/size of capture impacts the sustainable yield of a fishery
- Due to the variability in selectivity between
 fleets, allocation
 fractions, sector specific
 closures, size limits, and
 discard mortality will
 often impact benchmark
 values

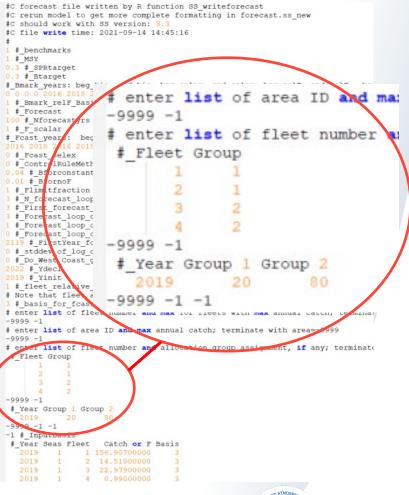

Benchmark dependence on forecast assumptions – Recruitment SSB30%

- Recruitment/productivity assumptions can impact benchmarks (e.g. MSY, SSB_{msy}, F_{msy})
- May impact current overfished and overfishing status determinations
- An SSB% benchmark will achieve variable F_{msy} (overfishing) but stable SSB_{msy} (overfished) determinations

Benchmark dependence on forecast assumptions – Recruitment SPR30%

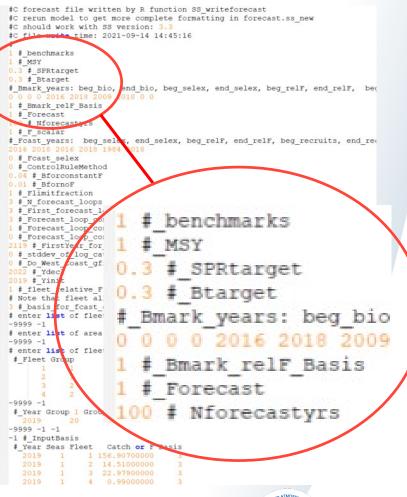
- Recruitment/productivity assumptions can impact benchmarks (e.g. MSY, SSB_{msy}, F_{msy})
 - May impact current overfished and overfishing status determinations
 - An SPR% benchmark will achieve stable F_{msy} (overfishing) but varying SSB_{msy} (overfished) determinations

Default Stock Synthesis approach to allocations


- Project with annual fleet specific effort held constant between all managed fleets in the fishery
- Annual total effort scaled to achieve
 F= F_{ofl} and benchmark targets at
 equilibrium
- Fleet specific catch is calculated and sector effort is adjusted to achieve target catch allocations
- Single pass adjustment that does not account for the impact of fleet selectivity
- Final equilibrium results may not achieve the target benchmark and/or the target annual F

```
#C forecast file written by R function SS writeforecast
#C rerun model to get more complete formatting in forecast.ss_new
#C should work with SS version: 3.3
#C file write time: 2021-09-14 14:45:16
 # benchmarks
# MSY
0.3 # SPRtarget
0.3 # Btarget
#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF, beg
 # Bmark relF Basis
# Forecast
00 # Nforecastyrs
 # F scalar
#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF, beg_recruits, end_red
2016 2018 2016 2018 1984 2018
 # Fcast_selex
 # ControlRuleMethod
    # BforconstantF
 01 # BfornoF
 # Flimitfraction
 # N forecast loops
 # First forecast loop with stochastic recruitment
 # Forecast loop control 3
 # Forecast loop control 4
 #_Forecast_loop_control_5
2119 #_FirstYear_for_caps_and_allocations
 # stddev of log catch ratio
 #_Do_West_Coast_gfish_rebuilder_output
    # Ydecl
2019 # Yinit
# fleet relative F
# Note that fleet allocation is used directly as average F if Do Forecast=4
 # basis for fcast catch tuning
# enter list of fleet number and max for fleets with max annual catch; terminat
-9999 -1
# enter list of area ID and max annual catch; terminate with area=-9999
-9999 -1
# enter list of fleet number and allocation group assignment, if any; terminate
# Fleet Group
-9999 -1
#_Year Group 1 Group 2
-9999 -1 -1
-1 # InputBasis
# Year Seas Fleet Catch or F Basis
```


Default Stock Synthesis approach to allocations


- Project with annual fleet specific effort held constant between all managed fleets in the fishery
- Annual total effort scaled to achieve
 F= F_{ofl} and benchmark targets at
 equilibrium
- Fleet specific catch is calculated and sector effort is adjusted to achieve target catch allocations
- Single pass adjustment that does not account for the impact of fleet selectivity
- Final equilibrium results may not achieve the target benchmark and/or the target annual F

Previous SEFSC approach to achieve benchmark target

- Iterative search for the target benchmark on top of the base SS allocation adjustment
- Adjusts the target benchmark input to SS until the achieved benchmark is equal to the true target benchmark
- Achieves target benchmarks only for SSB% or SPR% proxies
- MSY or F_{max}(MSY per recruit) benchmarks can not be achieved with this approach
- Does not ensure that annual F targets are achieved

New approach to achieve multiple forecasting targets - inputs

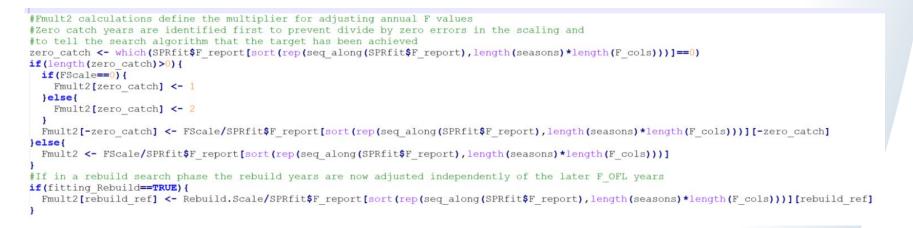
- Uses SS capacity to input fixed Fleet/Year specific catch/F values
- Iteratively adjusts fleet specific annual F for 100 years of projection to achieve all forecasting targets
- Achieves benchmark target, annual F targets, allocation targets, and relative effort targets simultaneously
- Functional for all benchmark targets (SSB%, SPR%, MSY, F_{max})
- Added capacity to automate OFL, ABC, and F_{rebuild} calculations that conform to all targets
- Uses three independent scaling functions to adjust F values

#C should work with SS version:	#_Year	Seas	Fleet	Catch or F	Basis
#c file write time: 2021-09-14	2019	1	1	156.90700000	
f_benchmarks	2019	1	2	14.51000000	3
1 #_MSY	2019	1	3	22.97900000	3
0.3 #_SPRtarget 0.3 # Btarget					
# Bmark years: beg bio, end bic	2019	1	4	0.99000000	3
0 0 0 0 2016 2018 2009 2018 0 0	2020	1	1	184.01000000	3
1 #_Bmark_relF_Basis 1 # Forecast	2020	1	2	11.89100000	3
1 *_rorecast 100 # Nforecastyrs	2020	1	3	66.11500000	3
1 #_F_scalar					
<pre>#_Fcast_years: beg_selex, end_</pre>	2020	1	4	1.37700000	3
2016 2018 2016 2018 1984 2018 0 # Fcast selex	2021	1	1	184.01000000	3
# ControlRuleMethod	2021	1	2	11.89100000	3
0.04 #_BforconstantF	2021	1	3	66.11500000	3
0.01 #_BfornoF 1 # Flimitfraction		-			-
3 # N forecast loops	2021	1	4	1.37700000	3
<pre>3 #_First_forecast_loop_with_st</pre>	2022	1	1	0.13281858	99
<pre>3 #_Forecast_loop_control_3</pre>	2022	1	2	0.01355791	99
<pre># Forecast_loop_control_ # Forecast loop_control :</pre>	2022	1	3	0.61455346	99
2119 #_FirstYear_for_caps_and_a		-			
0 #_stddev_of_log_catch_ratio	2022	1	4	0.01115655	99
0	2023	1	1	0.12842608	99
2019 #_Yinit	2023	1	2	0.01310953	99
1 #_fleet_relative_F	2023	1	3	0.59430693	99
# Note that fleet allocation is 3 # basis for fcast catch tunin	2023	1	4	0.01078899	99
# enter list of fleet number an					
-9999 -1	2024	1	1	0.12487318	99
<pre># enter list of area ID and max -9999 -1</pre>	2024	1	2	0.01274685	99
# enter list of fleet number an	2024	1	3	0.58115572	99
#_Fleet Group	2024	1	4	0.01055025	99
1 1					
2 1 3 2	2025	1	1	0.12268673	99
4 2	2025	1	2	0.01252367	99
-9999 -1	2025	1	3	0.57397653	.99
#_Year Group 1 Stoup 2 20 20 80	2025	1	4	0.01041992	99
-999 -1 -1	2026			0 12142020	00
-1 #_InputBasis					
<pre># Year Seas Fleet Catch or F H 2019 1 1 156,90700000</pre>					
2019 1 1 156.90700000 2019 1 2 14.51000000	3				
2019 1 3 22.97900000	3				

1) An equilibrium benchmark scaler which applies a single scalar multiplier to every F

```
#Calculate depletion target adjustment scale depending on the specified target (SPR r;
if(Forecast_target==1){
   search_step<-0.00001
   Target.Depletion <- forecast[["SPRtarget"]]
   Depletion<-SPRfit$SPR</pre>
```

```
Achieved.Depletion <- median(Depletion[(length(Depletion)-29):length(Depletion)])
DepletionScale <- (1-Target.Depletion)/(1-Achieved.Depletion)</pre>
```


```
DepletionScale <- (-log(1-((1-exp(-FScale))*DepletionScale))/FScale)</pre>
```

```
Depletion_R<-TimeFit3$SpawnBio/Virgin_bio
Target.Rebuild <- mean(Depletion_R[(length(Depletion_R)-9):length(Depletion_R)])</pre>
```

```
}else if (Forecast_target==2) {
    Depletion <- TimeFit3$SpawnBic/Virgin bic</pre>
```


2) An annual F scaler that applies a year specific multiplier to all fleets in each year

3) An annual allocation scaler that applies a year and sector specific multiplier to each fleet within a sector and year

```
#Here the achieved catch fractions by fishing sector and year are calculated and compared relative
#to the target allocations. An adjustment multiplier is then computed to adjust fleet Fs closer to a
#value expected to achieve the target allocations.
if(FScale > 0){
  if(n groups>0){
    Catch temp <- TimeFit3[,Catch cols3]
    Catch tot <- apply (Catch temp[, which (groups!=0)], 1, sum)
    for(i in 1:n groups) {
      sort.mat <- matrix (NA, nrow = 100*length (seasons)*length (which (groups==i)), ncol = 2)</pre>
      sort.mat[,1] <- rep(1:100, length(seasons)*length(which(groups==i)))</pre>
      sort.mat[,2] <- rep(apply(Catch temp[,which(groups==i)],1,sum)/Catch tot,length(seasons)*length(which(groups==i)))</pre>
      sort.mat <- sort.mat[order(sort.mat[,1]),]</pre>
      Allocations[Allocations[,4]==i,6] <- sort.mat[,2]</pre>
    3
  }
  Fmult3 <- (0.5*(Allocations[,5]/Allocations[,6]-1)+1)</pre>
}else{
  Fmult3 <- rep(1,100*length(seasons)*length(F cols))</pre>
```


#Adjust any multipliers of fixed catch values to 1 so that the #search algorithm will consider them to have achieved their target Fmult1[fixed_ref] <- 1 Fmult2[fixed_ref] <- 1 Fmult3[fixed_ref] <- 1 Comb Mult <- Fmult1*Fmult2*Fmult3</pre>

#Record the previous adjustment values so they can be used to optimize
#step sizes to speed up target convergence
Last_Mult1 <- DepletionScale
Last_Mult2 <- median(Fmult2[-fixed_ref])
Last_Mult2a <- median(Fmult2[rebuild_ref[which(!is.element(rebuild_ref,fixed_ref))]])
Last_Mult2b <- median(Fmult2[-sort(unique(c(fixed_ref,rebuild_ref))]])</pre>

#Plot out progess in achieving targets. This is primarily for diagnosis of a #run that is failing to converge on an answer in a reasonable period of time. col_options <- c("black","dark red","dark green","dark blue","orange","purple","red","green","blu point_options <- c(16,15,17,18,8,9,10,11,12,13,0,1,2,3,4,5,6,14,21,22,23,24,25,19,20) plot(Fmult1,xlab="year/season/fleet",ylab="Depletion Adjustment",col=rep(col_options[seq_along(F_ plot(rep(F_adjust1,100*length(seasons)*length(F_cols)),xlab="year/season/fleet",ylab="Depletion O plot(rep(F_adjust2,100*length(seasons)*length(F_cols)),xlab="year/season/fleet",ylab="F Optimizat plot(rep(F_adjust2,100*length(seasons)*length(F_cols)),xlab="year/season/fleet",ylab="F Optimizat plot(Fmult3,xlab="year/season/fleet",ylab="Allocation Adjustment",col=rep(col_options[seq_along(F_ plot(F_adjust3,xlab="year/season/fleet",ylab="Allocation Optimization Adjustment",col=rep(col_options[seq_along(F_ plot(F_adjust3,xlab="year/season/fleet",ylab="Allocation Opti

#Check if all targets have been achieved and if so stop fitting if(max(abs(1-Fmult1))>=Depletion.Threshold | max(abs(1-Fmult2))>=Annual.F.Threshold | max(abs(1-F if(FScale==0 & loop>2){keepFitting<-FALSE}</pre>

#Here we check that no Fs have been reduced to zero that need some catch #If that has occured repace the zero F with a small starting value 0.05 so that the #search algorithm can act on it to achieve the true target value. #This is needed if the ABC loop was used to perform a zero catch run and then #rebuild run is performed starting from those zero values zero Fs <- which (forecast F[, 4]==0)</pre> increase Fs <- which (Comb Mult>1) if (length (zero Fs)>0 & length (increase Fs)>0) { mod Fs <- zero Fs[is.element(zero Fs, increase Fs)]</pre> if(length(mod Fs)>0){ forecast F[mod_Fs,4] <- 0.05 } #Now adjust the previous F values by the estimated multiplier to create a #new estimate of the target Fs, make sure to overwrite any fixed catches #with their original values. forecast F[,4] <- forecast F[,4]*Comb Mult</pre> forecast F[fixed ref, 4] <- Fixed catch target[, 4] forecast[["ForeCatch"]] <- forecast F</pre> #Write the modified forecast data out to a file and rerun projections unlink(paste0(getwd(), "/forecast.ss")) SS writeforecast (mylist=forecast, overwrite = TRUE) shell(paste("cd /d ",getwd()," && ss -nohess",sep="")) #If all values have converged check if this is the OFL, ABC, or Rebuild loop

A combined all target multiplier is used to adjust SS input values and the forecast is rerun before again comparing achieved and target outcomes

New approach to achieve multiple forecasting targets – OFL/ABC/Rebuild

OFL

- Benchmark scaler is used with the calculation depending on the designated target (MSY, SPR%, SSB%)
- Once completed all results are saved to an OFL folder

ABC

- Currently targets an annual F_{ABC}=X%* F_{OFL}
- Benchmark scaler is set to 1
- Once completed all results are saved to an ABC folder

Rebuild

- Targets F_{OFL} after rebuilding target year a reduced F in earlier years to achieve SSB_{OFL} in the rebuild year
- Benchmark scaler is set to 1
- Once completed all results are saved to a Rebuild folder

New approach to achieve multiple forecasting targets – SSB% and SPR%

- Both the SSB% and SPR% benchmarks targets have a known status target and can therefore use a simple direct search.
- SSB% target is searching to achieve the desired SSB/SSB0 ratio at equilibrium
- SPR% target is adjusted for projected future recruitment by searching to achieve the desired (SSB/Recruits)/(SSB0/R0) ratio at equilibrium
- When projected recruitment is less than R0 SPR% F will be greater than SSB% F. When projected recruitment is greater than R0 SPR% F will be less than SSB% F.

New approach to achieve multiple forecasting targets – MSY and Fmax

}else if(Forecast target==2) { Depletion <- TimeFit3\$SpawnBio/Virgin bio Achieved.Depletion <- median (Depletion [(length (Depletion) -29) : length (Depletion)]) if (First run == TRUE) { Target.Depletion <- Achieved.Depletion First run <- FALSE Target.Rebuild <- Target.Depletion if (max (abs (1-Fmult3))>Allocation.Threshold | max(abs(1-Fmult2))>Annual.F.Threshold | max(abs(1-Fmult1))>Depletion.Threshold){ loop<-loopsubloop<-subloop+1 if (F max==TRUE) { Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])/ sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"]) }else{ Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3]) MSY.Fit[1,] <- c(Achieved.Catch,FScale,Achieved.Depletion,Target.Depletion)</pre> }else{ subloop<-0 if (F max==TRUE) { Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])/ sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"]) }else{ Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3]) MSY.Fit <- rbind(MSY.Fit[1,],MSY.Fit)</pre> MSY.Fit[1,] <- c(Achieved.Catch, FScale, Achieved.Depletion, Target.Depletion)</pre> if(loop>1){ if (Achieved.Catch<Last Achieved Catch) { search step <- -0.5*search step 3 Target.Depletion <- Target.Depletion+search step</pre> min diff <- which (abs (MSY.Fit[, 4]-Target.Depletion) <0.001)</pre> if(length(min diff)>0){ Old.Catch <- MSY.Fit[min diff[1],1] if (Old.Catch<Achieved.Catch) { search step <- -0.5*search step</pre> Target.Depletion <- Target.Depletion+search step Achieved.Catch <- Old.Catch }else{ steps <- seq(0.1,0.9,0.1) New.Target.Depletion <- steps[which(abs(steps-Target.Depletion)==min(abs(steps-Target.Depletion)))[1]] if (New.Target.Depletion<Target.Depletion) { search step <- -1*search step</pre> Target.Depletion <- New.Target.Depletion Last Achieved Catch <- Achieved.Catch DepletionScale <- (1-Target.Depletion)/(1-Achieved.Depletion)</pre> if (F max==TRUE) {

- For MSY (raw retained catch) and Fmax (retained catch per recruit) search the value of the benchmark target is unknown
- A two stage search is needed to only include results with correct allocations in the search for MSY
- Stage one = SSB% target search
- Stage two = search SSB%
 values to find SSB% that
 achieves MSY or Fmax

New approach to achieve multiple forecasting targets – MSY and Fmax

}else if(Forecast target==2) { Depletion <- TimeFit3\$SpawnBio/Virgin bio Achieved.Depletion <- median (Depletion [(length (Depletion) -29) : length (Depletion)]) if (First run == TRUE) { Target.Depletion <- Achieved.Depletion First run <- FALSE Target.Rebuild <- Target.Depletion if (max (abs (1-Fmult3))>Allocation. Threshold | max(abs(1-Fmult2))>Annual.F.Threshold | max(abs(1-Fmult1))>Depletion.Threshold){ loop<-loopsubloop<-subloop+1 if (F max==TRUE) { Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])/ sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"]) }else{ Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3]) MSY.Fit[1,] <- c(Achieved.Catch,FScale,Achieved.Depletion,Target.Depletion)</pre> else{ subloop<if (F max==TRUE) { Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])/ sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"]) }else{ Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3]) MSY.Fit <- rbind(MSY.Fit[1,],MSY.Fit)</pre> MSY.Fit[1,] <- c(Achieved.Catch,FScale,Achieved.Depletion,Target.Depletion) if(loop>1){ if (Achieved.Catch<Last Achieved Catch) { search step <- -0.5*search step 3 Target.Depletion <- Target.Depletion+search step</pre> min diff <- which (abs (MSY.Fit[, 4]-Target.Depletion) <0.001)</pre> if(length(min diff)>0){ Old.Catch <- MSY.Fit[min diff[1],1] if (Old.Catch<Achieved.Catch) { search step <- -0.5*search step</pre> Target.Depletion <- Target.Depletion+search_step</pre> Achieved.Catch <- Old.Catch }else{ steps <- seq(0.1,0.9,0.1) New.Target.Depletion <- steps[which (abs (steps-Target.Depletion)==min (abs (steps-Target.Depletion))) [1]] if (New.Target.Depletion<Target.Depletion) { search step <- -1*search step</pre> Target.Depletion <- New.Target.Depletion Last Achieved Catch <- Achieved.Catch DepletionScale <- (1-Target.Depletion)/(1-Achieved.Depletion)</pre> if (F max==TRUE) {

- For MSY (raw retained catch) and Fmax (retained catch per recruit) search the value of the benchmark target is unknown
- A two stage search is needed to only include results with correct allocations in the search for MSY
- Stage one = SSB% target search
- Stage two = search SSB%
 values to find SSB% that
 achieves MSY or Fmax

New approach to achieve multiple forecasting targets – MSY and Fmax

}else if(Forecast target==2) { Depletion <- TimeFit3\$SpawnBio/Virgin bio Achieved.Depletion <- median (Depletion [(length (Depletion) -29) : length (Depletion)]) if (First run == TRUE) { Target.Depletion <- Achieved.Depletion First run <- FALSE Target.Rebuild <- Target.Depletion if (max (abs (1-Fmult3))>Allocation. Threshold | max(abs(1-Fmult2))>Annual.F.Threshold | max(abs(1-Fmult1))>Depletion.Threshold){ loop<-loopsubloop<-subloop+1 if (F max==TRUE) { Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])/ sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"]) }else{ Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3]) I.Fit[1,] <- c(Achieved.Catch,FScale,Achieved.Depletion,Target.Depletion)</pre> else{ subloop<-0 if (F max==TRUE) { Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3])/ sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]), "Recruit 0"]) }else{ Achieved.Catch <- sum(TimeFit3[(length(TimeFit3[,1])-9):length(TimeFit3[,1]),Catch cols3]) MSY.Fit <- rbind(MSY.Fit[1,],MSY.Fit)</pre> MSY.Fit[1,] <- c(Achieved.Catch,FScale,Achieved.Depletion,Target.Depletion) if(loop>1){ if (Achieved.Catch<Last Achieved Catch) { search step <- -0.5*search step Target.Depletion <- Target.Depletion+search step</pre> min diff <- which (abs (MSY.Fit[, 4]-Target.Depletion) <0.001)</pre> if(length(min diff)>0){ Old.Catch <- MSY.Fit[min diff[1],1] if (Old.Catch<Achieved.Catch) { search step <- -0.5*search step</pre> Target.Depletion <- Target.Depletion+search_step</pre> Achieved.Catch <- Old.Catch }else{ steps <- seq(0.1,0.9,0.1) New.Target.Depletion <- steps[which (abs (steps-Target.Depletion)==min (abs (steps-Target.Depletion))][1]] if (New.Target.Depletion<Target.Depletion) { search step <- -1*search step</pre> Target.Depletion <- New.Target.Depletion Last Achieved Catch <- Achieved.Catch DepletionScale <- (1-Target.Depletion)/(1-Achieved.Depletion) if (F max==TRUE) {

- For MSY (raw retained catch) and Fmax (retained catch per recruit) search the value of the benchmark target is unknown
- A two stage search is needed to only include results with correct allocations in the search for MSY
 - Stage one = SSB% target search
 - Stage two = search SSB% values to find SSB% that achieves MSY or Fmax

Page 21 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Validating forecast results

- All projection approaches utilize the underlying SS population model mechanics for projections
- Results for every approach are validated by comparing reported forecast outcomes to those targeted by the stock assessment analyst
- Each approach has required an increase in the computational complexity of the projection search algorithms and software
- These changes represent an ongoing effort to continuously improve the realism of forecast projections

Plug for upcoming RESTORE planning project

- A collaborative effort between Vaughan Analytics (Nathan Vaughan, SEFSC (John Walter, Kate Siegfried, Skyler Sagarese), GMFMC (Ryan Rindone), SERO (Nick Farmer)
- Phase 1: Identify the key desirable features that could be improved for a future next generation forecasting platform
- Phase 2: Collaborate with the SSC and Council to determine best approaches for incorporating the resulting advice into management
- Phase 3: Work with range of potential users to identify optimal interface complexity/capacity tradeoffs for future software development

Questions

- Forecasting function github repository: <u>https://github.com/SEFSC/SFD-AllocationForecasting</u>
- Email: <u>nathan.vaughan@noaa.gov</u>

Page 24 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service