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Big data, such as vessel monitoring system (VMS) data, can provide valuable information on fishing behaviours. However, conventional meth-
ods of detecting behaviours in movement data are challenged when behaviours are briefer than signal resolution. We investigate options for
improving detection accuracy for short-set fisheries using 581 648 position records from 181 vessels in the Gulf of Mexico bandit-reel fishery.
We first investigate the effects of increasing VMS temporal resolution and find that detection accuracy improves with fishing-set duration.
We then assess whether a feature engineering approach—in our case, changing the way pings are labelled when training a classifier—could im-
prove detection accuracy. From a dataset of 12 184 observed sets, we find that the conventional point-labelling method results in only 49% of
pings being correctly labelled as ‘fishing’, whereas a novel window-labelling method results in 88% of records being labelled as ‘fishing’.
When the labelled data are used to train classifiers, point labelling attains true-positive/balanced-accuracy rates of only 37%/66%, whereas
window labelling achieves 68%/83%. Finally, we map fishing distribution using the two methods, and show that point labelling underestimates
the extent of fishing grounds by �33%, highlighting the benefits of window labelling in particular, and feature engineering approaches in
general.

Keywords: bandit reel, electric reel, fishing effort, Gulf of Mexico, machine learning, pattern recognition, random forest, signal purity, statis-
tical learning, supervised classification, track segmentation, vessel monitoring system, VMS.

Introduction
In recent years, two scientific developments have occurred with

the combined potential to transform fisheries management sci-

ence and policy. First, high-resolution vessel tracking technolo-

gies are providing unprecedented opportunities to develop

deeper insights into fishing vessel movements both in national

waters and on the high seas (McCauley et al., 2016). A number of

tracking systems exist, including Automatic Identification System

(AIS) and Vessel Monitoring System (VMS), the latter being le-

gally mandated in a wide range of fisheries from Alaska (NOAA,

2016) to Antarctica (CCAMLR, 2016). Second, a wide range of

powerful computational tools are now being applied to identify
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fishing behaviours in vessel tracking data (Russo et al., 2011b; Joo

et al., 2013; Chang and Yuan, 2014; de Souza et al., 2016), and

show considerable improvement over traditional but simplistic

vessel speed filters that can heavily skew results, e.g. 182% over-

estimation of fishing in a purse seine fishery (Bertrand et al.,

2008; but see de Souza et al., 2016).

Most work in segmenting fishing tracks into discrete behav-

iours has occurred in fisheries whose set durations (i.e. the peri-

ods when the gear is deployed) are longer than the corresponding

VMS period, such as the Peruvian purse-seine fishery (Bertrand

et al., 2008; Joo et al., 2011, 2013), the Norwegian stern-trawl

fishery (Skaar et al., 2011) and the Taiwanese pelagic longline

fishery (Chang and Yuan, 2014), which have respective set dur-

ations of up to 2, 8 and 24 h. However, fisheries with set dur-

ations shorter than the VMS period present a distinct challenge

(Lambert et al., 2012), as sets often fall between sequential VMS

signals and thus supervised classification or segmentation tools

trained on these datasets may underrepresent the true extent of

fishing.

A case in point is the Gulf of Mexico (GoM) bandit-reel fish-

ery. With reported landings of $23M in 2014 (NMFS, 2015), the

fishery has a mean set duration of �30 min which is consider-

ably shorter than the mean VMS period of one hour. Bandit-

reel fisheries have an advantage over other gear types in that

they are able to maintain a higher quality product due to the

short-set and are better able to target their fishing. Both of these

traits are becoming increasingly valuable due to the trends for

sustainably caught seafood around the world. Accurately iden-

tifying where and when bandit-reel vessels are fishing is there-

fore an important task for GoM fisheries analysts, but is

impeded by the temporal mismatch between the fishing behav-

iour and the VMS data. Although a policy change to increase

VMS signal resolution in the bandit-reel fishery may improve

classification accuracy for analysis of future data, the temporal

mismatch problem remains when analysing historical data that

contain a wealth of information on GoM fisheries, including

how fishing was displaced by large-scale disturbances such as

the spatial closure imposed after the BP Deepwater Horizon oil

spill in 2010.

To tackle the challenge of analysing data from short-set fish-

eries, we propose and test a novel method for labelling datasets to

be used in supervised classification. Within the fields of machine/

statistical-learning and big data analytics, feature engineering

(Turner et al., 1998) is a major focus of research effort, whereby

gains in model/classifier accuracies are pursued by manipulating

predictor variables (data features) rather than tuning algorithms/

models (Seide et al., 2011). Feature engineering approaches are

now commonly evaluated in performing computational tasks as

diverse as detecting sarcasm in TwitterVR feeds (Bamman and

Smith, 2015) and predicting the likelihood that a research paper

will be accepted for presentation at a conference (Qian et al.,

2016). However, despite the importance of feature engineering in

the computer science literature, the topic has seen surprisingly lit-

tle uptake in human or wild animal movement analysis.

We assess the value of taking a feature engineering perspective

when identifying fishing behaviour in a short-set fishery by mod-

ifying how training data are labelled when performing a super-

vised classification. When using an algorithm to recognize

patterns in data, it is first necessary to train the algorithm on a

dataset in which the different classes of interest have been

labelled. In the case of fishing vessel tracks, when on-board

observers have recorded when gears were deployed and recovered,

a training set of VMS pings can be created by labelling the pings

as ‘fishing’ or ‘not fishing’ based on the concurrent observer re-

cord. Algorithms can be trained to identify fishing behaviour

from these labelled vessel tracks, and then identify similar behav-

iours in ‘unseen’ vessel tracks (Joo et al., 2011, 2013; Chang and

Yuan, 2014). However, as we show here, algorithm accuracy is

sensitive to the manner in which the training data are labelled in

short-set fisheries.

One of the most common approaches to labelling involves

marking pings as either ‘fishing’ or ‘not fishing’ whenever an on-

board observer has recorded, respectively, that gears were or were

not deployed at that moment in time (Chang and Yuan, 2014).

This point-labelling method (Figure 1, upper timeline) works well

with long-set fisheries such as pelagic longline or otter trawl

where multiple pings are usually transmitted during each set.

However, for short-set fisheries such as bandit reel, point labelling

can reduce classifier performance because vessels are usually

engaged in ‘fishing behaviour’ for a period before and after the

gear is deployed. If gears are deployed just after a ping has been

transmitted—or are recovered just before a ping has been trans-

mitted—that ping will be labelled as ‘not fishing’, which may mis-

lead the classifier during training. Our proposed solution, window

labelling, is to label a VMS record as ‘fishing’ if gears were de-

ployed at any time during the �hourly ping window surrounding

that ping, thereby capturing fishing behaviour that took place

when no synchronous ping occurred.

Our study is presented in three parts. First, we investigate

whether bandit-reel classification accuracy improves with signal

purity (i.e. as the behaviour duration approaches the signal

period). Second, we use our window-labelling approach to deter-

mine whether classifier accuracy may be improved by appropriate

feature engineering, regardless of signal purity. Finally, we

Point labelling

Window labelling

Time

Observer record

ping

Set 1 Set 2

ping ping

F

ping window

F F

Figure 1. Conceptual diagram illustrating how the point-labelling
and window-labelling methods will result in different pings being
labelled as ‘fishing’ or ‘not fishing’ in a VMS record from a trip on
which an observer was aboard the vessel. The middle timeline (grey
boxes) shows the observer’s record of the times when sequential sets
started and ended. VMS ping transmission times are illustrated by
vertical dashed lines. The top and bottom timelines, respectively,
show how a concurrent VMS record would be labelled using point-
and window-labelling, with circled letters F indicating which pings
would be labelled as ‘fishing’ by each method. For details, see
subsection Comparing Labelling Methods.
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contrast the outcome of using the point- and window-labelling

methods to map bandit-reel fishing distribution in the US GoM.

Although we use random forest (Breiman, 2001) in our study, we

stress that our method is classifier independent as it simply in-

volves modifying the way in which the training data are labelled,

and we hope that it may be useful to researchers working with a

wide range of analytical approaches.

Methods
Datasets
Three datasets were used in the analysis, namely Vessel

Monitoring System (VMS) data, on-board observer programme

data and vessel logbooks. VMS transponders sending hourly (or

better) reports have been mandated on all commercial reef-fish

fisheries vessels in the GoM since 2007 (eCFR, 2016) but owing

to incomplete records in the first year of operation, only VMS

data for the years 2008–2012 were used in the present work. The

US National Observer programme monitors nearly 50 different

US fisheries to satisfy requirements of the Magnuson-Stevens

Fishery Conservation and Management Act, the Marine Mammal

Protection Act and the Endangered Species Act, among others

(NMFS, 2016). In the GoM as elsewhere in the US, observers ac-

company a sample of commercial fishing trips, recording the

gears used on each trip, plus the start- and end-time of each set.

Furthermore, all commercial vessels in the GoM are required to

maintain a logbook recording gear type used on each trip. The

logbook dataset was used at the outset to reduce the 20-million-

record VMS dataset and the 31 744-record observer dataset down

to trips on which bandit reel was the only gear used. The VMS

data were then divided into trips with and without observers. The

VMS data from trips with observers were used to create a

machine-learning training and validation dataset by cross-

referencing the VMS data with the observer data so the start- and

end-times of each set recorded by the observers could then be

used to label the VMS pings as ‘fishing’ or ‘not fishing’. This

labelled training dataset consisted of 43 077 position records for

112 vessels recorded over 275 trips, during which 12 184 individ-

ual fishing sets were observed. Finally, the remaining 538 571

VMS records from trips without observers were used to map

bandit-reel fishing locations throughout the US GoM, using the

trained classifiers to identify fishing behaviour.

Data processing
Rapid loading of the large datasets was enabled by the R-package,

data.table (Dowle et al., 2015). The bandit-reel fishery targets

mostly red snapper and shallow water groupers, which are found

within the boundary of the continental shelf and boats rarely fish

beyond the 200-m isobath (Figure 2). To improve processing effi-

ciency, the dataset was therefore reduced by excluding vessel pos-

itions that were in water >500 m depth, which was considered to

be a conservative threshold. Depth at each vessel position was ex-

tracted from the ETOPO1 database (Amante and Eakins, 2009)

using the R-package, marmap (Pante and Simon-Bouhet, 2013).

VMS records that had GPS coordinates outside the GoM basin,

missing or duplicated timestamps, or impossible speeds (using an

arbitrary threshold of 20 ms�1) were omitted from the analysis.

Seven metrics were derived from the VMS data and used as in-

puts during classification of fishing behaviour. The distance from

the preceding GPS position (leg distance) and compass heading

were calculated using spherical trigonometry functions

(bearingRhumb and distRhumb) in the R-package geosphere

(Hijmans, 2015). Absolute turning angles—specifically, the mag-

nitude of change in angle regardless of whether clockwise or anti-

clockwise—for each VMS record were calculated from the

headings of the legs to and from that position. Decimal hour of

day was calculated from timestamps and expressed to four deci-

mal places. Three metrics of vessel speed were calculated, namely

‘pre-position’ and ‘post-position’ speeds, and a three-position

average speed. For example, A, B and C are three successive VMS

positions. The pre-position speed at B was calculated as distance

travelled/time interval from A to B, the post-position speed at B

was the distance travelled/time interval from B to C, and the

three-position average speed at B was calculated as total distance

travelled/total time interval from A to C.

Supervised classification
Supervised classification was conducted using an R implementa-

tion (Liaw and Wiener, 2002) of random forest (Breiman, 2001),

which is one of the most popular classifiers in movement pattern

recognition (Joo et al., 2013). Random forest has the advantage of

being robust to overfitting to training data when performing

supervised classification, which it achieves by iteratively boot-

strapping the labelled training dataset and subsampling the puta-

tive predictor variables (aka features or attributes), then fitting a

classification tree to each subsampled ‘bag’ (Strobl et al., 2009).

Individual variables may be re-selected at successive nodes of the

same tree, allowing highly nonlinear and complex interactions to

be captured. Once an ensemble (forest) of trees has been built in

this manner, unlabelled data records are passed to the individual

trees. Each tree assesses the record and classifies it according to

the tree’s own random subset of features, meaning that trees often

disagree on the class to which the record belongs. The final classi-

fication of the record is declared by taking a ‘vote’ across the en-

tire forest ensemble, with the most popular class being selected as

the final label. About 30% of the labelled records in each bag are

not used during the classification itself, but are set aside as ‘out-

of-bag’ (OOB) samples for internally validating the accuracy of

the classification. OOB error rate often replaces formal out-of-

sample cross-validation (CV) in random forest classifications,

and this practice was tested here by comparing OOB error and

CV error when analysing signal purity. Two random forest en-

sembles were constructed to recognize fishing behaviour in VMS

data, one using training data labelled with the point-labelling

method and the other using training data labelled with the

Figure 2. Depths at fishing locations recorded during bandit-reel
trips when an observer was aboard the vessel.
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window-labelling method. The final variable sets used in

the point- and window-labelling forests were selected using the

R-package, pRF (Chakravarthy, 2016), which uses permutation

tests to determine which variables contributed significantly to the

ensemble.

Measuring classifier performance
Biased predictions can occur when the number of cases differs be-

tween classes, as with VMS data which will generally contain

more ‘not fishing’ than ‘fishing’ records. When the class of inter-

est (e.g. fishing) has fewer cases, then metrics of classifier per-

formance will tend to provide optimistic results unless the

imbalance is taken into account (Brodersen et al., 2010).

Furthermore, true positive rate should not be used in isolation as

a performance metric when classifying movement tracks as it re-

wards correct prediction of a positive case but does not penalize

incorrect prediction of a negative case. For instance, consider a

dataset with 1000 VMS pings, of which 100 were transmitted dur-

ing fishing behaviour and the other 900 were transmitted during

non-fishing behaviours. If a classifier simply predicted that all

1000 VMS pings represented fishing behaviour, it would achieve

a true positive rate of 1.0 (i.e. 100% correct) because it success-

fully identified all 100 fishing pings. In the example, however, the

classifier would receive a false positive rate of 0.9 (i.e. 900/1000

non-fishing pings were incorrectly labelled as fishing) and a true

negative rate of 0, as none of the non-fishing pings was success-

fully identified as non-fishing.

The balanced accuracy metric (Brodersen et al., 2010) simpli-

fies classifier performance as the arithmetic mean of the true posi-

tive and true negative rates, or 0.5 in the example. For a two-class

problem, a balanced accuracy rate of 0.5 may be interpreted as

getting all of one class right and all of the other class wrong. It

can be seen that a particular advantage of balanced accuracy is

that the metric is insensitive to class imbalance in the data—in

our example, 100 records in one class and 900 in the other.

Consequently, behaviour classes for which there are large num-

bers of records, such as for a vessel sitting in port for weeks on

end transmitting hourly VMS pings, do not overwhelm behaviour

classes for which there are fewer VMS pings, such as for a vessel

actively fishing. The present analysis used balanced accuracy

alongside true positive rate and false positive rate to assess the

performance of the two random forest ensembles.

Assessing the influence of signal purity
In the case of fishing, perfect signal purity occurs when the dur-

ation of the set is at least that of the VMS temporal resolution. As

the present study used historical VMS data, it was not possible to

manipulate the periodicity of the VMS pings to match bandit-reel

set duration, so instead the converse was done. Because the dur-

ation of fishing sets varied, it was possible to calculate the propor-

tion of each ping window that was spent fishing and then

determine the effect of variation in that proportion on the pre-

dictive accuracy of the classifier. For example, consider two-hour-

long ping windows. First, a window that contained two 25-min

fishing sets, meaning that the proportion of that window during

which the vessel was fishing was 0.83 (50/60 min). Second, a win-

dow that contained only a single six-minute set, giving a fishing

proportion of 0.1 (6/60 min). Even though fishing occurred

within both ping windows, it would be expected that a classifier

would have greater success in correctly identifying that fishing

had occurred in the former case, as more of that window was

spent engaged in fishing than in other behaviours. For analysing

the effect of signal purity on classifier accuracy, ping windows

were created around each ping, calculated as the sum of half of

the intervals before and after each ping. For example, if consecu-

tive pings were recorded at 9, 10 and 11 a.m., the window around

the middle VMS ping would be from 9.30 to 10.30 a.m. The ob-

server data were then used to assign a value to each VMS record

representing the proportion of the ping window that was spent

fishing, including zero for non-fishing pings. To assess the effects

of signal purity on classifier performance, the proportion of each

VMS ping window that was spent fishing was calculated, with

‘fishing’ and ‘not fishing’ labels being assigned using the conven-

tional point-labelling method. The data were then grouped by

signal purity into five levels (0.2, 0.4, 0.6, 0.8 and 1.0) and ran-

dom forest was sequentially trained and assessed at each level.

Both out-of-bag (OOB) error validation and formal out-of-

sample cross validation (CV) were performed for 20 replicate

runs for each signal purity level.

Comparing labelling methods
Point labelling and window labelling will result in differences in

which VMS pings are labelled as ‘fishing’ or ‘not fishing’ prior to

conducting a supervised classification (Figure 1). In the diagram,

a ping was transmitted while Set 2 was underway, so the concur-

rent VMS ping is marked as ‘fishing’ on the upper timeline.

However, no pings were transmitted when Set 1 was underway.

The bottom timeline shows the window-labelling method, where

a ping is labelled as ‘fishing’ whenever a set or part thereof

occurred within a time window around that ping, the ping win-

dow, illustrated using sequential horizontal braces. Here, the first

two pings would be labelled ‘fishing’. The improved classifier ac-

curacy that results from window labelling may partially be ex-

plained by the fact that vessels are generally engaged in fishing

behaviour for a period immediately before and after gears are de-

ployed, such as the vessel remaining stationary while hooks are

baited prior to fishing, or while gears are stowed after fishing. In

the diagram, the observed vessel would have been displaying

movement behaviours characteristic of fishing when the ping was

transmitted prior to the start of Set 1, but the point-labelling

method would have labelled the ping as ‘not fishing’ thereby con-

fusing the classifier. In the present analysis, the two different

methods were used in turn apply ‘fishing’ or ‘not fishing’ labels to

the same dataset of VMS pings from trips which had a fisheries

observer on board. A random forest ensemble was then built for

each training dataset, allowing the effect of the labelling methods

on classifier accuracy to be quantified and validated.

Finally, the two random forest ensembles were used to classify

unseen VMS pings into ‘fishing’ or ‘not fishing’. Maps of fishing

locations were produced by exporting the VMS coordinates

labelled as ‘fishing’ to a Geographic Information System (QGIS,

2016) and calculating the number of pings that fell inside each

cell of a 0.1 degree grid within the area of interest (17–31N, 79–

98W). The difference in spatial distribution of fishing predictions

between the point- and window-labelling methods was then

quantified as the number of positive predictions of fishing for

window labelling minus the number of positive predictions for

point labelling within each grid cell. Because the area of grid cells

defined in degrees changes with latitude, the difference in fished

area predicted by the two methods was determined by projecting

4 S. O’Farrell et al.
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the grid in Web Mercator and summing the areas of the individ-

ual cells for each method.

Results
The accuracy of the classifier in correctly identifying fishing be-

haviour increases with signal purity level (Figure 3), with the rela-

tionship starting to plateau as perfect signal purity is approached.

The number of training records contained within each signal pur-

ity subset is shown in Table 1. The accuracies quantified by the

OOB (diamond markers, Figure 3) and CV (circle markers,

Figure 3) errors were similar.

To compare the difference in the accuracy of classifier trained

using point- vs. window-labelling methods, OOB error was used

without any additional CV so that all of the samples could be

used. Of the 43 077 observed VMS records (i.e. bandit-reel trips

for which synchronous VMS and observer datasets existed), point

labelling and window labelling, respectively, resulted in 5948 and

10 723 of the VMS records labelled as ‘fishing’. A sensitivity ana-

lysis showed that classifier accuracy increased with training sam-

ple size for both point labelling and window labelling, but the

latter proved consistently the more accurate method across all

sample sizes (Figure 4). Point labelling attained a maximum bal-

anced accuracy rate (arithmetic mean of true positive and true

negative rates) of 0.66 (Figure 4a), a maximum true positive rate

of 0.37 (Figure 4b) and a maximum false positive rate of 0.05

when all 5948 training samples were used. At the same levels of

sampling, window labelling achieved a balanced accuracy rate of

0.83 (Figure 4a), a true positive rate of 0.68 (Figure 4b) and a

false positive rates of 0.07. Accuracy measures were continuing to

increase for window labelling by the time all 10 723 labelled re-

cords were used in training the classifier.

Point and window labelling were used to map bandit-reel fish-

ing extent and intensity in the GoM. Two random forests were

trained to identify fishing behaviour using the 43 077 observed

VMS records. The ranked importance of the predictor variables

to each forest ensemble is shown in Table 2. Each forest was then

used to classify the 538 571 VMS pings from trips for which an

observer was not aboard the vessel. The number of pings classi-

fied as ‘fishing’ in each cell was quantified and mapped for point

labelling (Figure 5a) and window labelling (Figure 5b).

Finally, the difference between the two maps was quantified on

a cell-by-cell basis (Figure 5c) by subtracting the density of point-

labelled pings (Figure 5a) from the density of window-labelled

pings (Figure 5b). A total fished area of 157 249 km2 was pre-

dicted by point labelling whereas the more accurate window-

labelling method predicted a 47% greater area of 230 772 km2.

The difference between the methods was highest in grid cells

where the window-labelling method predicted high fishing inten-

sity, indicating that the benefits of window labelling in accurately

estimating fishing intensity are most pronounced in heavily fished

grounds (Figure 5c).

Discussion
By combing three large datasets from a short-set fishery, we

found that the accuracy of a classifier at identifying fishing
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Figure 3. Accuracy in classifying bandit-reel fishing behaviour in
VMS data increases with signal purity, expressed here as the
proportion of each �hourly VMS window in which fishing gear was
deployed. Balanced accuracy was calculated as the arithmetic mean
of true positive rate and true negative rate. Diamonds and dashed
line, respectively, show the classifier accuracy calculated from
random forest out-of-bag (OOB) samples and a subsequent logistic
model fit. Circles and solid line show the same for cross-validated
(CV) samples. Markers show 20 replicate classifier runs for each
signal purity level for both OOB and CV accuracy calculations. OOB
and CV markers have been offset horizontally for clarity.

Table 1. The number of fishing records contained within VMS
subsets according to signal purity, which was used to analyse the
effect of increasing signal purity on classifier accuracy.

Signal
purity
level x�0.2 0.2<x�0.4 0.4<x�0.6 0.6<x�0.8 0.8<x�1.0

Number
of
records

904 1953 1578 896 617
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Figure 4. Balanced accuracy (left panel) and true positive rate (right
panel) both increase with the number of training samples used for
both conventional point labelling (circles) and window labelling
(diamonds). Markers show 20 replicate classifier runs for each
labelling method and each sampling level.
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behaviour may be markedly improved either by a policy change

to increase the temporal resolution of VMS data gathering or by a

change in the way the training data are labelled for classification.

Taking both courses of action would, we propose, have the

greatest benefit as each has advantages. Increasing the temporal

resolution of the VMS data would enhance classifier accuracy in

the future, which would in turn improve the identification of

fishing locations, increase the spatial resolution at which

Table 2. Ranked importance of predictor variables in constructing each forest.

Point-labelled random forest Window-labelled random forest

Features Mean decrease in Gini index Features Mean decrease in Gini index

Hour of day* 2013 Velocity mean* 3381
Velocity mean* 1899 Hour of day* 3282
Depth* 1746 Depth* 3031
Velocity prior 1534 Leg distance prior* 2487
Leg distance prior 1450 Velocity prior* 2442
Velocity post 1346 Velocity post 1964
Turn angle 1052 Turn angle 1162
Heading 997 Heading 989

Variables that contributed significantly to each forest are indicated with an asterisk.

Figure 5. (a and b) Extent and intensity maps of US Gulf of Mexico bandit-reel fishing produced by training a random forest classifier to
identify fishing behaviour in VMS data using two methods, point labelling (a) and window labelling (b). Shading shows the count of VMS
pings classified as fishing behaviour in each 0.1� grid cell. (c) This shows the difference between the methods in the number of VMS pings
identified as fishing behaviour in each cell.
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behaviours can be mapped, and also the estimation of the amount

of time spent actively fishing. On the other hand, window label-

ling may improve accuracy in the present day when analysing ei-

ther current or historical data whose temporal resolution is lower

than the behaviour duration, or when interpolating between

missing data points in high resolution data.

Another feature-engineering approach to improving the detec-

tion of short-set fishing behaviour could be to statistically amplify

the temporal resolution of the data by interpolating between suc-

cessive VMS pings using approaches such as cubic Hermite

splines (Hintzen et al., 2010) or the modified Catmull–Rom algo-

rithm, CRm (Russo et al., 2011a). CRm interpolation accommo-

dates estimates of vessel drift caused by wind and wave action as

well as human control and has been shown robust at interpolat-

ing between VMS pings across a range of métiers (Russo et al.,

2011a) representing active, passive and towed gears. CRm inter-

polation requires the availability of instantaneous measures of

vessel speed and heading, which can be transmitted along with

the position and timestamp data. However, as these data are not

systematically transmitted by the Gulf of Mexico (GoM) VMS

implementation, it was not possible in the present work to inves-

tigate the magnitude of further gains in accuracy that could be

achieved using the CRm interpolation algorithm.

Although we used random forests as the classifier in our ana-

lysis, we hope and intend that window labelling may prove useful

for researchers using a wide range of tools in vessel movement

analysis as the method involves engineering of the training data

labels rather than tuning of a particular model or algorithm. The

fundamental problem with conventional point labelling of short-

set fishing behaviours is that it can induce unrepresentative label-

ling of the training data, because the instantaneous nature of

signal transmission means that short-duration sets are often ‘just

missed’ and so a VMS ping will be labelled as not-fishing even if

the vessel is engaged in fishing activities such as gear setting or

catch sorting which are visible to movement data analyses.

Improving the training dataset may provide benefits in supervised

learning regardless of the learning tool being used, although the

magnitude of gains may of course vary among tools.

As well as benefits to window labelling, however, there are also

caveats. The most notable limitation of our method is that it can

result in a small increase (2% in our analysis) in false positives, as

a VMS record will be marked as ‘fishing’ even if the set finished

before the ping was transmitted and the vessel is now steaming.

Although our results show that any increase in false positives is

more than offset by the decrease in false negatives in terms of bal-

anced accuracy, it does raise concerns about using window label-

ling for enforcement purposes where fine-scale error may result

in a vessel being incorrectly flagged as fishing across a no-take

boundary when in fact the vessel is merely steaming after recover-

ing its gear. The limitation is presently hypothetical in many loca-

tions as VMS data are not universally used for enforcement at

this time, but increasing the temporal resolution of the data from

short-set fisheries may mitigate this problem before it arises.

Our finding that classifier accuracy increases with the temporal

resolution of the GoM bandit reel VMS data contributes to a body

of work showing that vessel monitoring data are often transmitted

with suboptimal frequency for detecting movement behaviours. In

their study of two fisheries from the Isle of Man, Lambert et al.

(2012) examined how the temporal resolution of VMS data gather-

ing affected indicators of fishing intensity. The study used data from

the king scallop dredge fishery and the queen scallop otter trawl

fishery, two benthic towed-gear fisheries which are likely to exhibit

notably different movement behaviours to the pelagic vertical-line

bandit reel fishery in the GoM. By gathering a study-specific high-

resolution movement track, the authors were able to determine that

a VMS period of 30 min would provide an optimal balance between

data accuracy and data-gathering efficiency. Working with the

Peruvian anchovy purse-seine fishery, Joo et al. (2013) took a differ-

ent approach to assessing how temporal resolution affects detection

of movement behaviours. By simulating data with one-second reso-

lution, the authors found that accuracy of their models approached

100%. Three analyses (Lambert et al., 2012; Joo et al., 2013 and the

present work) using three experimental approaches on four mark-

edly different fisheries all found that increased temporal resolution

improved the ability to detect movement behaviours in VMS data.

The maps we present in Figure 5 represent the distribution and

intensity of fishing behaviour in the GoM. In addition to these spa-

tial parameters, the standard protocol for measuring bandit reel

fishing effort requires information on three further parameters: the

number of hooks per line, the number of lines deployed and the

total soak time (Scott-Denton et al., 2011). Although these data

were not available for our analysis, it is commonplace in the VMS

literature to use fishing activity as a proxy for effort (Witt and

Godley, 2007) and our maps may be considered analogous.

Although window labelling was developed to improve detection

accuracy in the GoM bandit reel fishery, we hope that the method

may prove useful to researchers working with other fisheries where

the behaviours of interest are shorter than the periodicity of the sig-

nal. In particular, other vertical line fisheries may be particularly

suitable for window labelling. It is also possible that window label-

ling may by beneficial in detecting longer duration fishing behav-

iours. During exploratory analysis of VMS data from the GoM

benthic longline fishery that has a mean set duration of greater than

two hours, we found that window labelling also improved classifier

accuracy, although the gains are not as great as with the bandit-reel

data. In general, we feel that feature engineering of vessel movement

datasets has received substantially less interest than have compari-

sons among various classifiers and models to detect fishing behav-

iours. We would encourage other researchers to consider whether

modifying their data, whether through window labelling or other

methods, could improve detection accuracy irrespective of the ana-

lytical tools being used. With the increasing interest in using VMS

and AIS data for monitoring fishing both in national waters and on

the high seas (McCauley et al., 2016), any improvements in the ac-

curacy of detecting behaviours may be considered to be beneficial.

Looking to the future, a characteristic of the GoM observer data-

set is that it only records when gears were deployed and recovered,

but does not record when a vessel was engaged in other important

behaviours, such as steaming, repositioning between sets, preparing

gears for deployment, processing catch after gear recovery, and

searching for fish. The omission is not a fault of the dataset as the

observer program was not designed to gather data for training clas-

sification algorithms, but it does limit what can be done with the

otherwise extensive and meticulously gathered dataset. Observer

datasets with higher ‘behavioural resolution’ have been gathered in

other fisheries such as the Peruvian purse-seine fishery (Joo et al.,

2013). Given the promise of the new movement technologies and

methodologies that are presently being developed in fisheries, it

would be beneficial for future analyses to increase the behavioural

resolution of the GoM observer dataset, and would incur little add-

itional effort or cost.
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In terms of further work, both the point- and window-

labelling methods were predictably sensitive to the number of

training samples used. In the present study, we used only data

from 2008 to 2012, and it is clear that maximum accuracy had

not yet been reached by the time all of the samples were used. We

anticipate that accuracy may modestly increase as further samples

are added, and that an ensemble classifier trained on subsequent

data from 2013 to 2016 may improve on our results.
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