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A B S T R A C T

A global expansion of satellite-based monitoring is making fisher behavioral responses to management actions
increasingly observable. However, such data have been underutilized in evaluating the impacts of fishing on
target and non-target fish stocks or the ramifications of management strategies on fishers. We demonstrate how
vessel monitoring system (VMS) data can provide a suite of metrics (such as effort) for improving inputs to stock
assessments, dynamic delineation of fishing grounds, and evaluation of regulatory or other (e.g., climatic) im-
pacts on fisher performance. Using>1 million VMS records from the Gulf of Mexico grouper-tilefish demersal
longline fishery, we first develop a generalized additive modeling approach that predicts fishing duration with
∼85% accuracy. We combine model predictions with logbook data to compare the fishery before and after
implementation of a suite of regulatory changes (e.g., a shift to catch share management). We find a large-scale
reduction in fleet size, accompanied by reduced fishing effort (duration * number of hooks), shorter trips, lower
operational expenses, higher catch rates, and more earnings for those vessels that remained in the fishery. We
discuss how the combination of VMS and associated metrics can be expanded for use in management strategy
evaluation, parameterizing economic models of fisher behavior, improving fishery-dependent stock assessment
indices, and deriving socioeconomic indicators in fisheries worldwide.

1. Introduction

Many factors drive the dynamics of commercial fisheries and sub-
stantial effort is expended on understanding and predicting fisher re-
sponses to such drivers. As fishing fleets react to changing environ-
ments, markets, and governance, the ability of scientists and managers
to quantify their behavior becomes increasingly critical for under-
standing not only the dynamics of exploited stocks but the economic
sustainability of the fisheries themselves (van Putten et al., 2012;
Fulton et al., 2011).

Vessel monitoring systems (VMS) have improved our ability to
monitor fishing vessel movements and to evaluate fishing fleet behavior
(e.g., fishing location) and spatially-explicit economic decision-making

(e.g., Watson and Haynie, 2018). VMS transmit vessel locations at
regular intervals, and are required by dozens of national governments
and regional fisheries management organizations. These systems facil-
itate monitoring of speeds, changes in bearing, locations, and other
aspects of vessel behavior that can indicate when and where vessels are
fishing.

VMS have been used to examine spatial fishing activities at higher
temporal resolutions, leading to more precise estimates of effort (e.g.,
Mills et al., 2007; Peel and Good, 2011; Joo et al., 2013), validation of
fisher-reported logbooks (e.g., Palmer and Wigley, 2009; Bastardie
et al., 2010), delineation of fishing grounds (e.g., Stelzenmuller et al.,
2008), assessment of benthic impacts from fishing (e.g., Lambert et al.,
2011), and more. Some software packages now simplify and automate

https://doi.org/10.1016/j.fishres.2018.06.006
Received 29 December 2017; Received in revised form 4 May 2018; Accepted 10 June 2018

⁎ Corresponding author at: NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Pt. Lena Loop Rd., Juneau, AK 99801, United
States

E-mail address: jordan.watson@noaa.gov (J.T. Watson).

Fisheries Research 207 (2018) 85–94

0165-7836/ Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/01657836
https://www.elsevier.com/locate/fishres
https://doi.org/10.1016/j.fishres.2018.06.006
https://doi.org/10.1016/j.fishres.2018.06.006
mailto:jordan.watson@noaa.gov
https://doi.org/10.1016/j.fishres.2018.06.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fishres.2018.06.006&domain=pdf


standard VMS analyses (Russo et al., 2014, or Hintzen et al., 2012), but
specific case studies often still require customized modeling ap-
proaches. For example, Ducharme-Barth and Ahrens (2017) developed
random forest algorithms with VMS data to assess changes in fishing
effort as a result of closures associated with the Deepwater Horizon Oil
Spill. O’Farrell et al. (2017) examined solutions for identifying fishing
behavior when fishing events occurred over time intervals that were
less than the VMS sampling frequency. Thus, while software can be
used to automate some tasks, more general analytical approaches and
metrics must be developed to address individual cases. As environments
change and regulatory strategies shift, the ability to monitor impacts on
fishers using VMS data will become increasingly important (Melnychuk
et al., 2012; Clay et al., 2014).

Catch share systems are an example where managers may wish to
quantify fisher responses to regulatory change. Catch shares seek to
reduce the inefficiencies resulting from too many fishers competing for
limited resources (Grafton, 1996) and evaluation of such systems can be
enhanced through resolution of spatial dynamics in the fishery. With
catch shares, individual fishers are allocated shares of the total catch,
which enables them to seek fishing opportunities in locations that
minimize costs and maximize expected revenue (e.g., Haynie and
Layton, 2010; Birkenbach et al., 2017). VMS data provide the oppor-
tunity to monitor fishing locations and durations at the trip-, set-, or
haul-levels. Through VMS-derived estimates of fishing duration,
changes in the efficiency of fishing (e.g., catch or revenue per unit ef-
fort) can be quantified across time to monitor the effects of catch shares
or other regulatory transitions.

The demersal longline fishery for reef fishes in the Gulf of Mexico is
one fishery with VMS that has undergone a dramatic regulatory tran-
sition, providing an opportunity for quantifying the associated changes
in fishing behavior (e.g., location and duration) and economic perfor-
mance (e.g., catch, cost, and revenue). This fishery primarily targets
gag grouper (Mycteroperca microlepis) and red grouper (Epinephelus
morio) as well as tilefishes (Caulolatilus spp.) and a complex of other
deep- and shallow-water groupers (Farmer et al., 2016; Supplementary
material Appendix Table A.1), with 2015 ex-vessel revenue of $28
million (NMFS, 2016). In 2010, an individual fishing quota (IFQ), or
catch shares, system was implemented to avoid continuation of “…
higher than necessary levels of capital investment, increased operating
costs, increased likelihood of shortened-seasons, reduced safety at-sea,
wide fluctuations in grouper supply, and depressed ex-vessel prices;
leading to deteriorating working conditions and lower profitability for
participants.” (Amendment 29; Gulf of Mexico Fishery Management
Council, 2008). The changes associated with the catch share transition
came a year after sea turtle bycatch regulations were introduced, con-
sisting of time-varying, area-specific depth restrictions and a reduction
in the maximum number of hooks. The fleet was further impacted by a
longline endorsement program that restricted fishing to vessels that had
sustained average annual catches greater than 40 000 pounds from
1999 to 2007 (Amendment 31; Gulf of Mexico Fishery Management
Council, 2010).

Our study makes several contributions to the literature on quanti-
fying fisher behaviors (e.g., unobserved spatial fishing patterns) and
exploring fisher responses to regulatory changes. First, we use VMS data
to build a probabilistic model for estimating unobserved fishing dura-
tion (for our purposes, duration is longline set, soak, and retrieve time).
Second, we combine the results from our VMS-based model with log-
book data to derive fishing activity and performance metrics like trip
distance, effort (fishing duration * number of hooks), catch per unit
effort, and revenue per unit effort. Finally, we test the hypothesis that
regulatory changes increased fishing efficiency (i.e., increased revenue
for less effort) in the Gulf of Mexico demersal longline fishery for reef
fishes. Although we demonstrate our method by asking questions of
fisher responses to regulatory changes, we stress that the approach
could also be used to investigate fishing responses to a broad range of
disturbances, including climatic regime shifts, catastrophic events (e.g.,

oil spills), or fishery collapse.

2. Data and methods

We integrated three data sources (observer, VMS, and logbook data)
into our modeling approach. Observer data were used to train and
validate models of VMS data for estimating fishing effort, as described
below. VMS data were then merged with logbook data to derive and
evaluate a suite of behavioral, performance and economic metrics to
understand the impacts of regulatory changes. All analyses were per-
formed using R Statistical Software Version 3.3.2 (R Core Team, 2016).

2.1. Data

An observer program was established in 2006 for all vessels feder-
ally permitted to target reef fish using demersal longlines in the Gulf of
Mexico (Scott-Denton et al., 2011). The number of vessels in this pro-
gram changed dramatically during our study period (discussed below).
Trips in this fishery average ∼10 days and on-board observers are as-
signed to vessels in the fleet to record operational and catch informa-
tion (e.g., information on gear, set, catch and trip characteristics). In
our case, 183 bottom longline trips (∼4% of trips) were observed on 62
vessels from 2007 to 2012 for which we also had VMS and logbook
data.

Since 1993, commercial vessels that were federally permitted in the
Gulf of Mexico also had logbook reporting requirements. Logbook re-
quirements have evolved since then and, for many years, longline soak
times or other metrics of fishing duration were not consistently col-
lected. Thus, no estimates of fishing duration other than trip days were
available from logbooks for the pre- and post-regulatory transition
(unless trip duration was considered as a proxy for fishing effort).

VMS programs have required the transmission of hourly vessel lo-
cation information since 2007 (Amendment 18A; Gulf of Mexico
Fishery Management Council, 2005). We used VMS-based vessel loca-
tions and time-stamps to calculate the distance between VMS records
(using the Haversine formula [Sinnot, 1984; Charles et al., 2014]),
vessel speed, and distance from port.

Speed calculations were based on the average time and distance
travelled between records at times t and t-1 and times t+ 1 and t.
Records with speeds over either of these time periods exceeding 20
knots were considered erroneous and were excluded.

2.2. Model-estimation of fishing duration from VMS data

VMS data for individual trips were combined with observer data and
modeled to estimate fishing duration (see Supplementary material
Appendix A for details on identification of trips from VMS data). When
observers were present (∼4% of trips during our study period), they
reported the start and end times for each longline set, which allowed us
to train models that predicted fishing duration based on VMS data.
Observers reported an average of 27 (± 13.1) sets per trip with an
average duration of 4.2 h per set, so that the average set had 4–5 VMS
records, depending on when a VMS ping occurred relative to observed
start and stop times of fishing (see O’Farrell et al., 2017 for a discussion
of VMS transmissions vs. fishing event duration). If a VMS record oc-
curred between observer-reported set start and end times, we con-
sidered the VMS record to represent a fishing event. We fit logistic
generalized additive models (GAMs; Hastie and Tibshirani, 1990;
Wood, 2006) with a logit link to observed VMS records to estimate the
probability that fishing occurred (p(fishing)) based on a suite of cov-
ariates (Table 1) that described fishing activities:

logit(p(fishing))= s1(Covariate1)+ s2(Covariate2,Covariate3)+...
+sj(Covariatek), (1)

where si(•) represents an individual smoothing function for each
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covariate, fit using thin plate regression splines (tensor splines were
examined for bivariate terms but did not improve fits). All candidate
models included univariate predictors, as illustrated by s1(Covariate1),
and some candidate models included bivariate terms allowing for in-
teractions, as illustrated by s2(Covariate2,Covariate3). All covariates
(Table 1) were continuous except for the categorical variables, month
and year. Computational demands prevented examination of all pos-
sible covariate combinations but several dozen models were explored
based on hypothesized relationships between fishing behaviors (e.g.,
preferred depths, times of day) and vessel movements (see Supple-
mentary material Appendix Table A.2 for candidate models). Model
selection is discussed below. We avoided covariate combinations (e.g.,
speedt−1 and speedavg or speedt+1 and speedavg [described in Table 1])
that led to collinearity as indicated by variance inflation factors> 3
(Zuur et al., 2010; R function corvif included in supplementary material
of reference). Standard regression assumptions (e.g., normality,
homoscedasticity) were checked via model diagnostics and residual
plots.

Given the nature of VMS data, spatial autocorrelation may be a
concern. We assumed that models including a spatial term (e.g.,
sj[Longitude, Latitude]) accounted for such autocorrelation. For those
models that did not include an explicit spatial term, we visually ex-
amined model outputs for spatial autocorrelation by mapping residuals.

Our primary interest was to develop the most accurate measure of
fishing duration for unobserved trips so model selection proceeded by
seeking the GAM that minimized prediction errors. We compared pre-
dictive ability for each of the models using leave-one-out cross valida-
tion (LOOCV) with the 183 observed fishing trips whereby models were
fit to all but one trip and predictive accuracy was tested on the re-
maining holdout trip. This process was repeated for each of the 183
fishing trips, using parallel processing to reduce computation times
(Knaus et al., 2009). We assessed prediction accuracy at the trip-level
instead of set-level because our application of this model was more
broadly focused on trip-level changes in fishing behaviors before and
after the regulatory transition. To quantify prediction error at the trip-
level we summed the predicted probabilities (p[fishing]) for all VMS
records within each trip and compared this to the number of VMS re-
cords that were observed to be fishing. To ensure that our best model
was not over-predicting fishing, which would provide a low relative
error rate for fishing and a high relative error rate for non-fishing, we

compared the predictions for non-fishing VMS records by comparing
the sum of (1 – p(fishing)) to the number of VMS records that were
observed while not fishing. A simple percent error calculation
(100*[observed-predicted]/observed) was performed for the compar-
isons. See Supplementary material Appendix A for further discussion
and approaches on quantifying prediction errors.

We used the selected GAM to predict which VMS pings occurred
while vessels were fishing during the remaining unobserved trips for
which we had both VMS and logbook data (N=2423 trips, 62 vessels).
We estimated trip-level effort by summing the predicted probabilities
for all VMS records within each trip and multiplying the sum by the
60min VMS transmission interval (see Supplementary material
Appendix A for additional details on model selection and effort calcu-
lations). Gaps in VMS transmissions greater than expected did occur
(6.5% of VMS records were transmitted at> 65min intervals), but the
median and mode of transmission frequencies were 60min. We discuss
the role of transmission gaps in a subsequent section.

2.3. Comparison of fishing behavior and performance before and after the
regulatory transition period

Many vessels left the fishery after implementation of the catch share
and longline endorsement programs (see Results). Vessels that re-
mained in the fishery after catch share implementation were allocated
initial shares based on their historic catches. To assess how regulations
affected those vessels that remained in the fishery, all comparisons of
pre- and post-regulation used only vessels that were present both before
and after the transition.

To test the hypothesis that fishing efficiency increased following
regulatory changes, we compared fishing performance and behavior
before (2007–2008) and after (2011–2012) the regulatory transition. In
addition to the January 1, 2010 switch to a catch share program, a
series of depth restrictions, gear modifications, time-area closures, and
the Deepwater Horizon Oil Spill (which yielded its own series of short-
term time-area closures) all occurred during a transition period
(2009–2010), leading to a protracted changeover from pre- to post-
regulation behaviors. Thus, we excluded the transition years and fo-
cused only on the before and after periods. Our ideal situation would
have included a control fishery to bolster our statistical comparison of
the regulation effect, but even in a global meta-analysis of catch shares

Table 1
Description of model covariates explored for predicting the probability of fishing for each VMS record, and the hypothesis of how they may affect model estimation of
fishing. Values were included from original data or derived for each VMS record of each trip.

Variable name Description Expected relationship to fishing activity

Distance Distance from nearest county line (proxy for distance from shore/port) A proxy for fishing location; certain distances are more likely to be associated
with fishing.

Depth Depth (m) calculated using NOAA NGDC bathymetry data through the R
Marmap package (Pante and Simon-Bouhet, 2013).

Depth restrictions and depth-specific fish habitat will affect chances of fishing.

Month Month of VMS record (categorical) Different regulations occur during certain months.
Year Year of VMS record (categorical) Accounts for changes in the fishery that may reflect regulatory dynamics.
Hour Hour of the day, modeled using cyclic penalized regression splines (Wood,

2006)
Little fishing occurs in the middle of the night.

Speedt−1 Vessel speed calculated between the current and the previous VMS record Indicative of what vessel speed was – certain speeds are not conducive to
fishing.

Speedt+1 Vessel speed calculated between the current and subsequent VMS record Indicative of new speeds, associated with transitions into or out of fishing
operations.

Speedavg Average of the forward and backward calculated speeds When combined with above speed formulations, indicates slowing or speeding
of vessel associated with fishing operations.

Speedt5 Average of Speedavg over a 5 record moving window Same as Speedavg but with a larger window
Δdistance The change in the distance variable between the current and previous VMS

record
Indicative of vessel direction to/from port versus along bathymetry lines

Δdistancep Mean of the previous 5 values of Δdistance Indicative of vessel direction during previous several hours
Δdistances Mean of the subsequent 5 values of Δdistance Indicative of vessel direction during next few hours
Δdistanceavg Mean of Δdistance and the 2 previous and subsequent values of Δdistance Similar to above with a different time window for transitions between

directions
Latitude Latitude Identifies potential fishing grounds
Longitude Longitude Identifies potential fishing grounds
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fisheries, Essington (2010) was unable to find controls for all before-
after comparisons. Confounding factors or potential biases may exist in
a before-after comparison, but we believe that our approach still pro-
vides a valuable comparison. In particular, by excluding the 2009–2010
transition years (i.e., removing so-called history threats to internal va-
lidity [Conrad et al., 1991]) and by using a full suite of fishing behavior
and economic indicators, we have sought to remove and buffer against
some potential biases.

We used linear mixed effects models (R nlme [Pinheiro et al., 2017])
to quantify the change in several fishery metrics (Table 2), or response
variables (Yt,v) before and after the transition period. Several of these
metrics are consistent with those explored by Brinson and Thunberg
(2016) to evaluate changes in fishing performance (e.g., revenue), but
most provide additional detail relevant to answering behavioral ques-
tions. One of the major regulatory changes included limitations on
fishing depth as specified on a monthly basis, so we divided year into
seasons A (Jan–Mar), B (Apr–Jun), C (July–Sep), and D (Oct–Dec) to
allow for intra-annual variability in responses. We fit individual models
by season to quantify the effect of regulatory changes on the responses.
We explored the use of vessel and port as random effects within the full
model (Eq. (2)) via restricted maximum likelihood (Zuur et al., 2009),
yielding a random vessel intercept in all cases. For each response
variable, we then used the AIC to select a model with (Eq. (2)) versus
without (Eq. (3)) a continuous covariate for vessel length:

Yt,v= (β0+ b0v)+ β1*Regulationt,v + β2 * Vessel Lengthv+ εt,v (2)

Yt,v= (β0 + b0v)+ β1*Regulationt,v+ εt,v (3)

b0v∼Normal(0, σv2)

εt,v∼Normal(0, σ2)

The subscripts t and v represent trip and vessel, respectively.
Regulation was a dummy variable indicating whether a trip occurred
during the pre- (0) or post-regulatory period (1). The effect of Vessel
Length was treated as time-invariant, so we omitted the trip-level sub-
script from this term in (2). The random intercept for vessel (b0v) and
the residuals (εt,v) were assumed to be independent and normally dis-
tributed with means zero and variances σv2 and σ2, respectively.

The term of primary interest was the fixed coefficient on Regulation,
which measures the change in the response variable after regulatory
transition. For log-transformed response variables (Table 2), the coef-
ficient reflects percent change. For untransformed response variables,
the coefficient was divided by the model intercept to obtain percent
change.

3. Results

3.1. Model-estimation of fishing effort from VMS data

We analyzed>1 million VMS records to identify 4371 longline
trips made by 150 vessels in the Gulf of Mexico from 2007–2013.
Among these trips, 161 (3.5%) had onboard fishery observers, remained
in the fishery after the regulatory transition, and were thus suitable for
model development and validation. We present model estimation and
comparison with the observer data, but logbooks typically did not in-
clude soak times so no comparison with logbook estimates on that
metric was possible.

The final model (see Supplementary material Appendix A and Table
A.2 for candidate model discussion) selected by LOOCV was:

p(fishing)=month+s(distance)+ s(hour)+ s(depth)
+ s(speedt-1,speedt+1) + s(Δdistances, Δdistancep) (3)

where all covariates were continuous (see Supplementary material
Appendix Fig. A.1 for partial dependence plots) except for the factor,
month. The covariates distance and depth provided spatial proxies for the
locations of fishing grounds and the targeting of certain species com-
plexes. Different speed formulations enabled the model to capture
vessels speeding up and slowing down as they transitioned to different
phases of gear setting and retrieval, consistent with other VMS-based
estimates of fishing duration (e.g., Vermard et al., 2010; Joo et al.,
2013; Gloaguen et al., 2015). The change in distance from port terms
(Δdistances, Δdistancep) allowed the model to capture vessel orientation
along isobaths in two dimensions and, like the speed transitions, cap-
ture changes in vessel behaviors. For example, if a vessel was sequen-
tially speeding up and slowing down while maintaining little change in
the distance from shore (i.e., Δdistance was small), the vessel was likely

Table 2
List of metrics evaluated as response variables for examination of the effects of regulation on the fishery. Some descriptions refer to metrics defined in previous rows
of the table.

Metric Description Expectation

Trip distancea Cumulative distance between all VMS records per trip A proxy for fishing location; distance provides a simple indicator of changes in spatial
behaviors.

Trip durationa VMS-derived time between start and end of trip Similar to trip distance but enables accounting for nearer to port trips (i.e., less time) that
changed in duration. An increase in efficiency would generally lead to expected
decreases in trip durations.

Fishing durationb (GAM-derived probability of fishing per trip) * (median
VMS transmission interval per trip [typically 60-min])

Intermediate calculation for effort metric (below)

Proportion of trip spent
fishing

Fishing duration / Trip duration Serves as a complementary indicator to fishing and trip durations to illustrate changes in
fishing strategy.

Effort (Logbook-reported number of hooks per trip) * (Fishing
duration)

Intermediate value for catch per effort metric (below)

Catcha Logbook-reported pounds per trip Intermediate value for catch per effort metric (below)
Catch/Efforta Catch / Effort An increase in this metric suggests that the same amount of effort yielded greater catches

following the transition, and thus an increase in fishing efficiency.
Earningsa Logbook-reported gross earnings per trip (US dollars) Intermediate value necessary for earnings/effort
Earnings/Efforta Earnings/Effort An increase in this metric suggests that the same amount of effort yielded greater

revenue following the transition, and thus an increase in fishing efficiency.
Mean depth fisheda Average depth for each VMS record where p

(fishing) > 0.5
Allows for characterization of targeting behavior (shallow- vs. deep-water species
complexes).

Mean distance from
shorea

Average distance from county line closest to each VMS
record

Similar to depth, this may be an indicator of different targeting behavior or habitat use.

Bait expensea Logbook-reported cost of bait per trip Indicator of fishing costs; a decrease suggests an increase in efficiency.
Fuela Logbook-reported quantity of fuel per trip Indicator of fishing costs; a decrease suggests an increase in efficiency.

a Terms that were log-transformed for model fitting.
b Terms that were used to derive other metrics but that are not included here as model response variables.

J.T. Watson et al. Fisheries Research 207 (2018) 85–94

88



following an isobath, parallel to the coast, and more likely to be fishing.
This rationale is consistent with targeting species at specific depths.
Finally, most fishing occurred during daytime or early evening, with
little fishing between midnight and early morning, explaining selection
of hour. The month term was useful for estimating intra-annual differ-
ences in targeting behaviors, which may be associated with different
distances from shore or depths. Residuals did not demonstrate an ob-
vious spatial pattern and the selected model predicted better than
spatially-explicit models, suggesting little effect from spatial auto-
correlation.

The final model had an average trip-level prediction error ([ob-
served – predicted]/observed) of −4.0% (standard deviation 24.1%)
(Supplementary material Appendix Table A.2), with the negative sign
indicating a propensity to predict more fishing than was observed. The
average of the absolute percent error, was 15.1% and 8.6% for pre-
dicting fishing and non-fishing, respectively. It is counter-intuitive to
have a greater percent error when predicting fishing than non-fishing
given that our models tend to over-predict fishing. However, VMS re-
cords where fishing was occurring accounted for only two-thirds as
many VMS records as non-fishing records. Thus, despite the slight over-
prediction of fishing, it does not occur at such a rate that overwhelms
the greater number of the non-fishing events. Prediction errors were not
statistically different across years (ANOVA F(6,175)= 0.97, p= 0.45),
which is consistent with similar operational behaviors (e.g., the speed
at which gear is set and retrieved).

3.2. Comparison of fishing behavior and performance before and after
regulatory transition

Regulatory changes in the fishery for reef fishes were associated
with reduced fleet sizes; the fishery went from 129 and 120 vessels in
2007 and 2008, respectively, to 65 and 68 vessels in 2011 and 2012,
respectively. The size composition of the fleet (∼14m average vessel
length) did not change across our study period but vessels that left the
fishery had, on average, landed only 76% as much fish per trip during
the pre-regulatory period as those that remained. Additionally, these
vessels earned only 71% as much gross revenue per trip during the pre-
regulatory period. Those vessels that left the fishery landed on average
only 56% as many pounds of fish per year as the vessels that remained
in the fishery, and they earned only 52% as much gross revenue during
the pre-regulatory period.

Vessels that remained in the fishery throughout the regulatory
transition period increased their fishing efficiency, as determined by a
series of fishing behavior and performance metrics (see Supplementary
material Appendix Tables A.3 and A.4 for coefficients and standard
deviation of random intercepts). We analyzed 2423 trips for which we
could link VMS-derived metrics and logbook data, with comparable
numbers of trips in the before (N= 1250) and after (N=1173) per-
iods. At the trip-level, the catch per unit effort (CPUE) nearly doubled
while catch, gross revenue per unit effort, and gross revenue also in-
creased substantially and across all four seasons while fishing effort
decreased (Fig. 1). Much of the ∼50% decrease in effort (hooks *
hours) was attributable to the 2009 implementation of a maximum
number of hooks per set, which reduced hook usage by ∼60% per trip.
This effort reduction coupled with increased catches of ∼50% ac-
counted for the doubling of CPUE. A notable difference occurred in
several cases during C-season (July–September), when fishing was re-
stricted to waters beyond the 35-fathom isobath to promote bycatch
mitigation. During this period, the mean depth of fishing increased and
there was a less marked decrease in effort than during other seasons,
but catches shifted to valuable deep-water species complexes that fa-
cilitated an increase in gross revenues (ex-vessel prices have generally
increased since the IFQ transition [NMFS, 2016]). During A and D-
seasons, trip distances decreased slightly as fishing effort moved closer
to shore (Fig. 2) (consistent with reduced trip distances and shallower
fishing; Fig. 1).

In addition to examining fishing performance and economic metrics
at the trip level, we also modeled aggregate levels, where response
values were summed for each vessel (that remained in the fishery
throughout the study period) and year over all trips per season during
the before (2007–2008) and the after (2011–2012) regulatory periods
(Fig. 3). The average number of trips per vessel per year was unchanged
(Wilcoxon rank sum, P > 0.05). Across all seasons, decreased bait
costs, increased gross revenue, and decreased total effort were sig-
nificant. During C-season, the number of trips decreased and there was
a net reduction in the total distances and durations traveled at the
vessel level. Maps suggested less notable movement in fishing locations
during B and D-season (Fig. 2) so the increases in gross revenue and
overall performance (though not in gross revenue variability) were
likely more associated with the reduced fleet size than with shifts in
behavior. Meanwhile, A-season effort moved slightly shoreward which
was associated with a minor reduction in average travel distances. Less
fuel was used each season (though not significantly in C-season) per-
haps related not only to travel distances but to reductions in actual
fishing time (vessels often use more fuel while engaged in fishing than
transiting).

4. Discussion

By combining the spatial aspects of VMS data with fisher-reported
logbook information on catch, costs, and gross revenue, we quantified
an increase in fishing efficiency following a regulatory transition in the
Gulf of Mexico bottom longline fishery. After the transition, there were
fewer vessels. These vessels landed more fish and generated higher
revenues in less time and with fewer hooks than before the transition.
Our study required development of an accurate approach for estimating
fishing duration in a longline fishery that had no prior reporting of trip-
level fishing durations and for which many of the more ‘typical’ VMS-
based approaches for estimating effort (e.g., speed thresholds [Deng
et al., 2005]) yielded unreasonably large errors. This study also filled a
gap in methods used to evaluate regulatory changes (e.g., catch shares
[Clay et al., 2014; Brinson and Thunberg, 2016]), and other perturba-
tions, by demonstrating how the relevant indicators of fishing perfor-
mance could be derived, especially when valuable information like
fishing duration was not available.

4.1. Model-estimation of fishing effort from VMS data

Many studies have used VMS data to resolve spatial dynamics and
effort of fishing fleets but relatively few have done so for longlines (e.g.,
Chang and Yuan, 2014). This is likely due to the more complicated
speed characteristics of vessels during the multiple phases of setting,
retrieving, and repositioning associated with longline gears, as opposed
to the relatively constant speeds of trawling. In contrast, our longline
model included a combination of factors that served as proxies for not
only what the vessel was doing (e.g., speeding up or slowing down) but
also the time of day and vessel location (e.g., depth, and orientation to
shore).

Our prediction of fishing was accurate, with an average absolute
error of only 15.1% (standard deviation, 19.2%). While our model
failed to capture relevant vessel characteristics on some trips, a greater
source of error may arise from aspects of the data themselves. First, the
greatest errors occurred during trips with fewer numbers of observed
fishing records (Fig. A.3), where smaller numbers of predictions could
lead to larger percentage errors, and outliers were generally indicative
of over-predictions of fishing. Examination of the individual VMS re-
cords associated with such trips suggested that behaviors on those trips
were atypical compared to other observed trips. For example, in an
extreme case, the model predicted a high probability of fishing when it
was expected to do so; the vessel arrived at the fishing grounds, slowed
to typical fishing speeds, and exhibited tortuous movement patterns
consistent with other fishing sets, all at the time of day during which
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fishing generally occurred. However, the vessel was on the fishing
grounds for more than 24 h before the observer data indicated that
fishing occurred. In a second extreme case, a trip was observed to be
nearly 20 days long but fishing was only reported during the first half of
this period. However, the vessel behavior and the model predictions
continued to suggest fishing activity was occurring, despite a lack of
reported fishing. Such behaviors were difficult to account for with
models, but, overall, the models fit well; trips with ≤10% absolute
prediction errors accounted for 43% of trips, while 68.7% of trips had
absolute prediction errors less than the standard deviation of prediction
errors (19.2%). Additionally, errors associated with over-prediction of
fishing often occurred for the VMS records that were adjacent to those
observed to be fishing, suggesting that the transition to fishing beha-
viors often began before gear was set or continued slightly after gear
was retrieved (i.e., times reported by observers to be the start and end
times of fishing). A further source of error may be VMS transmission
rates. Despite mandated transmission frequencies of 60-min, more than
half of observed trips had at least one gap in VMS intervals greater than
60-min. Finally, as the time between VMS records increases, the accu-
racy of some model covariates decreased. Vessel speeds and changes in
distance from port were calculated between consecutive VMS records,
so as the time between records increased, the accuracy of derived fields
decreased, as did the strength of their relationships with the modeled

response (see Watson and Haynie, 2016; Palmer, 2008 for further dis-
cussion).

Several candidate models yielded similar predictions, suggesting
that while slight variations in model structure made a difference, cer-
tain aspects of vessel behaviors were more important than the nuances
of how they were modeled. In some cases, including two speed for-
mulations as univariate (i.e., fixed effects) versus bivariate (i.e., an
interaction) terms yielded little difference in predictive success.
Similarly, in one case, a model that included latitude and longitude
reduced the AIC by more than 100 units, but the same model without
the spatial component had a similar mean absolute percent error. The
best predictive models included at least a single formulation for speed,
distance from shore, time of day, depth, and change in distance from
shore, and they suggest that future approaches may benefit from model
averaging.

Several candidate models improved upon previous efforts to esti-
mate fishing duration in a longline fishery (e.g., as compared with
Chang and Yuan, 2014). For our application aimed at deriving socio-
economic indicators and evaluating a regulatory transition, several of
our models would have yielded similar conclusions regarding fishery
changes following regulation. However, for stock assessment or other
management applications, we acknowledge that users may have dif-
ferent criteria that would prioritize covariate selection. For example,

Fig. 1. Model estimates of the percent change in response variables after regulatory changes during the A–D-seasons.
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instead of selecting a model by optimizing prediction accuracy at the
trip-level, users may prefer an approach that optimizes prediction ac-
curacy at the scale of individual VMS records to provide higher spatial
resolution of fishing estimates.

4.2. Comparison of fishing behavior and performance before and after
regulatory transition

The objectives of the grouper-tilefish IFQ program were to reduce
over-capacity, to increase fishing efficiency, and to mitigate derby-
fishing conditions (NMFS, 2016). Over-capacity can be generally de-
scribed as the difference between a fleet’s potential and actual output
(Kirkley et al., 2006). While only logbook and permit data are necessary
to evaluate certain aspects of fleet capacity (e.g., number of vessels and
trips) and derby conditions, our VMS-based approach provides a means
to evaluate changes in fishing efficiency. We demonstrated large in-
creases in catch rates and drastic reductions in fishing effort at both the
trip- (Fig. 1) and aggregate-levels (Fig. 3). We have defined fishing

effort as longline soak time * number of hooks, though it should be
noted that entire papers have examined the complexities of selectivity,
hook saturation and other aspects that can confound comparisons of
effort metrics (e.g., Løkkeborg et al., 1989; Hovgaard and Lassen,
2000). For our purposes, we assume that fishers consistently seek to
maximize the catch from their effort and that changes in effort are re-
flective of regulatory change (see below and Eigaard et al., 2011 for
discussion of additional confounding possibilities). Bycatch regulations
in the fishery reduced maximum hook numbers by ∼60% per trip,
dictating the majority of the observed effort reduction. For example, the
greatest average trip-level reduction in effort was 48.7% (B-season)
while the reduction in fishing duration during that season was only
9.3%. This suggests that bycatch mitigation (i.e., hook restrictions)
played a greater role on effort reduction than the IFQ.

The effects of different regulations become confounded when de-
scribing fishery changes based on fishing efficiency alone. A longline
endorsement program initiated a reduction in fleet size that further
continued under the shift to IFQ. Vessels that left the fishery had

Fig. 2. Difference in seasonal (A–D) fishing effort before versus after the regulatory transition period. Values are the difference between the predicted hours of fishing
after the regulatory period minus the predicted hours of fishing before the regulatory transition, so positive numbers (blue-green colors) indicate more fishing after
(2011–2012) and negative numbers (brown colors) indicate more fishing before (2007–2008). Grey pixels represent minimal difference in pre/ post effort (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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historically only earned, on average, about half the annual gross rev-
enue of vessels that remained, yet the reduction in fleet size still led to
reduced competition that allowed fewer vessels with fewer hooks to
catch more fish. So, while trip durations remained either similar or
slightly shorter after the regulatory transition, there was an overall
increase in fishing efficiency; attributing it to a single regulation,
however, is difficult. Meanwhile, bycatch regulations during C-season
restricted the fleet to deeper waters farther offshore where increased
catch rates enabled them to meet their quotas for deep-water species
faster, reducing the number of offshore trips and subsequently the
overall days at sea during that period (Fig. 3).

We identified shifts in performance and spatial fishing behavior in
two seasons, highlighting the differences in results that emerged from
our method using VMS data. While C-season fishing moved offshore,
there was an A-season shift to fishing nearshore, and both of these
spatial redistributions were associated with higher catch rates, gross
revenues, gross revenues per unit effort and lower revenue variability.
To calculate how trip-level gross revenue per unit effort changed
(Fig. 1), we divided the gross revenue per trip by our estimates of
fishing effort. Gross revenue increased and effort decreased, leading to
a slight overall increase in gross revenues.

Clay et al. (2014) proposed revenue-per-unit-effort as an indicator
for evaluating social and economic performance of catch share pro-
grams but doing so using logbook data alone could have been

misleading in this fishery. If we had not used our VMS-derived effort
metric but instead had used logbook-reported trip length, the estimated
mean seasonal changes in gross revenues per unit effort would have
approximately doubled because changes in trip duration (as reported by
logbooks) were not as reflective of changes in fishing duration (as de-
rived from VMS). Such findings would have over-estimated the effects
of regulatory transition on this metric.

Our discussion of changes in fisher behavior and success has focused
on regulatory drivers of behavior. However, productivity in a fishery is
a function of fishermen's behavior, say B, and the (unobserved) stock
characteristics, X. So the production function Y= f(B,X) changes over
time due to changes in B, changes in X or both. Our paper suggests that
the changes in Y= f(B,X) that we observed are all caused by changes in
B (which are attributable to changes in regulations). However we do
not control for changes in X, and we therefore have an identification
problem. It would be preferable to include fishery independent stock
estimates in our models of fisher responses but such estimates are not
available and biomass estimates are only available for three of the more
than a dozen species in the reef fish complex. While our treatment of
behaviors at the seasonal level may account for some stock-specific
targeting behaviors in each year, such complexities may not fully ac-
count for bias introduced by stock dynamics (e.g., Eigaard et al., 2011).

Fig. 3. Model estimated percent changes in average annual vessel metrics during the A–D-seasons.
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4.3. Implications for stock assessment

Our VMS-based approach is poised to improve both spatial and
temporal aspects of estimating fishing effort for the purposes of stock
assessment. In the Gulf of Mexico bottom longline fishery, scientists
have used only number-of-hooks to calculate catch rates for groupers,
snappers, and tilefishes because there was no reliable estimate for time
spent actively fishing. Assessment of these stocks has been further
complicated by the coarse spatial resolution of the logbook data; the
entire fishery is divided into just a few statistical management grids,
with single reporting areas stretching from the coastline to several
hundred kilometers offshore and encompassing a depth range of more
than 200m. When trips include landings of both deep- and shallow-
water stocks from a single management grid, there is no accounting for
the proportions of effort that were allocated towards targeting deep
species versus shallow species. Because the location of each VMS record
can be associated with bottom depth, the spatial distribution of effort
can be resolved to account for targeting of species complexes associated
with distinct habitats and can better resolve catch rates. This finer re-
solution is particularly important for species like groupers, whose
biology includes aggregating behavior that can lead to hyper-stable
catch rates and subsequently, bias in stock abundance indices
(Carruthers et al., 2015).

4.4. Broader implications and conclusions

While our study focused specifically on quantifying impacts from
regulatory change, our approach also has broad applicability to un-
derstanding the spatial responses of fleets to environmental changes
(e.g., Pinsky and Fogarty, 2012; Joo et al., 2014, 2015). A con-
temporary paradigm is that as waters warm, movement of fish to higher
latitudes will be accompanied by similar shifts of fishing fleets (Pinsky
and Fogarty, 2012). However, in cases like the Bering Sea pollock
fishery, fisher spatial responses to climate dynamics do not support a
simple northward shift; physical (e.g., Pfeiffer and Haynie, 2012),
economic (Haynie and Pfeiffer, 2013), or a combination of factors
(Watson and Haynie, 2018) have underscored the need for fine-scale
spatial data to characterize the resiliency of fishing fleets to climatic
change (Watson and Haynie, 2018) and to lay the foundation for
adaptive management (Joo et al., 2015).

We have provided an example in which spatially-explicit fishery
metrics were compared by examining the model coefficients of a binary
dummy variable representing a regulatory change. However, this ap-
proach could be readily modified to examine continuous environmental
covariates like water temperature or to account for events like an oil
spill or implementation of a marine reserve. Similarly, intra-fleet dy-
namics could be compared using vessel groups: delivery to different
processors, fishing in different areas, targeting different species com-
plexes, or those associated with different levels of bycatch or dis-
carding. The need for adaptive fisheries management has long been
recognized (Walters, 1986), and with technological advances, we are
now able to more accurately measure how fleets respond to such
changes.
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