Supplementary Material

How fisher behavior can affect stock assessment: insights from an agent-based modeling approach

Steven Saul Elizabeth Brooks David Die

Note to Reader

The supplemental material contains simulation model input parameters, stock assessment model configuration and functions used, and detailed species-specific simulation model results. The authors acknowledge the temptation for readers, especially those familiar with the Gulf of Mexico reef fish complex, to extrapolate presented trends to the real system. However, readers are reminded that study results are from a simulation model and are cautioned not to extrapolate stock status or projection results to the real fisheries in the present day. Although the simulation contained significant realism in its representation of population and fishery dynamics, regulatory conditions during the 20-year long simulation were held constant and reflected the policies in place between 2005 and 2006. This was done because the purpose of this study was to see how fisher behavior alone (in the absence of regulatory changes) affects stock assessment. Since that time, the fishery experienced significant changes in regulatory structure which likely changed the behavior of the fishers. This included the implementation of an individual transferable fishing quota system, gear modifications, and the implementation of a vessel monitoring system. For purposes of this study, we wanted to understand how fisher behavior could affect fisherydependent data in the absence of regulatory changes.

Simulation Model Input Parameters and Functional Forms

σ_0^2 (partial $\gamma_z(h) =$	
Spherical Variogram: sill) 0.31 $\left(c_n + \sigma_0^2 \left[\frac{3}{2}h - \frac{1}{2}\left(\frac{h}{2}\right)^3\right], 0 < h < 1$	7.0
Spatial Distribution of a_0 (range) 0.95 $\begin{cases} a_0 + b_0 \\ a_0 - a_0 \end{pmatrix} = \begin{cases} a_0 + b_0 \\ a_0 - a_0 \end{pmatrix}$	~0
Abundance (kilometers) $c_0, a_0 < h$	
c_n (nugget) 0 where: $c_0 = c_n + \sigma_0^2$	
von Bertalanffy Growth $\frac{L_{\infty}}{1}$	
(mm) $K = 0.16$	
$t_0 -0.19 L_t = L_{\infty}(1 - e^{-k(t-t_0)})$	
δ 8.02	
σ 5.34 $P_{female} = \frac{\omega}{1 - (a_{max} - \delta)} - (a_{min} - \delta)$	$\frac{5}{\sqrt{5}}$ ×
$\omega \qquad 0.77 \qquad \Phi_{0,1}\left(\frac{-max}{\sigma}\right) - \Phi_{0,1}\left(\frac{-max}{\sigma}\right)$	-)
Sequential Cumulative $\left(\Phi_{0,1} \left(\frac{a-\delta}{b} \right) - \Phi_{0,1} \left(\frac{a_{min}-\delta}{b} \right) \right)$	
Hermaphroditism normal $\begin{pmatrix} 10,1 \\ \sigma \end{pmatrix} = 0,1 \\ \begin{pmatrix} \sigma \end{pmatrix}$	
(proportion female) $\Phi_{\mu,\sigma}^{2}(x)$ distribution	
<i>M</i> ∞ 0.99	
Logistic Maturity at K 0.03 $M_L = \frac{M_{\infty}}{4 + \frac{1}{2} + \frac{1}{$	
Length (mm) γ 307.63 $1 + e^{-\kappa(L-\gamma)}$	
A 4.79	
Spawning stock Biomass $SS_{BG} = \sum N_t(a * t^b)$	
$\begin{bmatrix} (grams of gonad weight) \\ B \\ 1.56 \end{bmatrix} = \begin{bmatrix} 1.56 \\ t=0 \end{bmatrix}$	
Beverton and Holt A 10,691,500	
Recruitment (Number of $R_{rec} = \frac{a * SS_{RG}}{a + SS_{RG}}$	
Age 1 Fish) B 83,148,000 $R_{RG} = b + SS_{RG}$	
Length (mm) to Weight A 0.00000006 $W = \alpha I^b$	
(kg) Relationship B 3.14	
Brobability Female At Age b_0 -0.051 Female - h t + h	
Probability remaie At Age b_1 1.053 $Female = b_0 t + b_1$	
Migration Speed (in grid α 0.7 $c = a^{\alpha}$ $\frac{1}{\alpha - \beta x}$	
cells per simulation day): $S = p^{\alpha} \frac{1}{(\alpha - 1)!} x^{\alpha} e^{-p^{\alpha}}$	
gamma distribution β 0.2 where $x = U(0,1)$	
Biased Random Walk	
Exponential Distribution	
Shape Parameter C 0.9	
Terminal Age (years)	
Starting Abundance (number of fish)	
15,235,104	
Explicitly Modeled (includes	
recreational fishing mortality) 0 303	

Table S.1: Simulation model input parameters and associated biological functions for red grouper.

Table S.2: Simulation model input parameters and associated biological functions for gag	,
grouper.	

Process	Parameter	Gag Grouper	Equation
	σ_0^2 (partial		$\gamma_z(h) =$
Spherical Variogram:	sill)	0.14	$\left(c_{n} + \sigma_{0}^{2} \left[\frac{3}{2}\frac{h}{h} - \frac{1}{2}\left(\frac{h}{h}\right)^{3}\right], 0 \le h \le a_{0}$
Spatial Distribution of	a_0 (range)	0.9	$\left\{\begin{array}{cccc} c_n & c_0 & c_0 \\ $
Abundance (kilometers)	. ($c_0, a_0 < h$
	C_n (nugget)	0	where: $c_0 = c_n + \sigma_0^2$
von Bertalanffy Growth	L∞	1,310	
(mm)	K	0.14	$-k(t-t_{0})$
		-0.37	$L_t = L_\infty (1 - e^{-\kappa(t-t_0)})$
	δ	12.46	(1)
	σ	3.12	$P_{female} = \frac{\omega}{\Delta (a_{max} - \delta)} \times (a_{min} - \delta) \times (a_{min} - \delta)$
	ω	1.00	$\Phi_{0,1}\left(\frac{-m}{\sigma}\right) - \Phi_{0,1}\left(\frac{-m}{\sigma}\right)$
Sequential		Cumulative	$\left(\Phi_{0,1}\left(\frac{a-\delta}{a}\right) - \Phi_{0,1}\left(\frac{a_{min}-\delta}{a}\right)\right)$
Hermaphroditism	x 2()	normal	$\begin{pmatrix} \sigma, \sigma \\ \sigma \end{pmatrix}$
(proportion female)	$\Phi_{\mu,\sigma^2}(x)$	distribution	$-(k+\beta l)$
Female Maturity and	k	-9.02	$M_L = e^{-e^{-(\kappa+\mu_L)}}$
Gender Assignment (L in	0	0.016	
Male Maturity and Conder	p k	0.016	$e^{-(k+\beta L)}$
Assignment (L in	ĸ	14.387	$M_L = 1 - e^{-e^{-(\alpha + \mu)}}$
millimeters)	ß	-0.013	
	P	0.015	n
Spawning Stock Biomass (W	in pounds of	mature female	$SS_{CC} = \sum W_i$
fish)			
,			where i represents mature female fish
Beverton and Holt	h	0.840	
Recruitment (Number of	R ₀	2,151,073.742	$4hR_0SS_{GG}$
Age 1 Fish)	φ	0.0151	$R_{GG} = \frac{1}{R_0 \phi (1-h) + (5h-1)SS_{CC}}$
Length (mm) to Weight	a	0.0000001	
(kg) Relationship	Ь	3.03	$W = aL^{b}$
Migration Speed (in grid	α	0.7	$a = \alpha \alpha - 1 = \beta r$
cells per simulation day):			$S = \beta^{\alpha} \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-\beta x}$
gamma distribution	β	0.3	where $x = U(0,1)$
Biased Random Walk			
Exponential Distribution			
Shape Parameter	С	0.9	
Terminal Age (years)			
		30	
Starting Abundance (numbe	r of fish)		
		3,436,938	

Fraction of Fishing Mortality Not		
Explicitly Modeled (includes		
recreational fishing mortality)		
	0.598	

Table S.3: Simulation model input parameters and associated biological functions for mutton snapper.

		Mutton	
Process	Parameter	Snapper	Equation
Spherical Variogram:	σ_0^2 (partial sill)	0.31	$\gamma_{z}(h) = \left[c_{n} + \sigma_{0}^{2} \left[\frac{3}{2} \frac{h}{r} - \frac{1}{2} \left(\frac{h}{r} \right)^{3} \right], \ 0 < h \le a_{0} \right]$
Spatial Distribution of	a_0 (range)	0.87	$\begin{bmatrix} 2 u_0 & 2 (u_0) \end{bmatrix}$
Abundance (kilometers)	c _n (nugget)	0	where: $c_0, a_0 < n$ $c_0 = c_n + \sigma_0^2$
von Portalanffy Growth	L∞	874.44	
(millimeters)	k	0.16	
(minimeters)	t ₀	-1.32	$L_t = L_{\infty}(1 - e^{-k(t-t_0)})$
	R	-9.02	$M_{-} - \frac{1}{1}$
Maturity (<i>L</i> in millimeters)	L ₅₀	0.016	$1 + e^{-R(L-L_{50})}$
Spawning Stock Biomass (<i>W</i> in kilograms of female fish)		f mature	$SS_{GG} = \sum_{i=0}^{n} W_{i}$ where i represents mature female fish
Beverton and Holt	h	0.75	
Recruitment (Number of	R ₀	1,842,399	$4hR_0SS_{GG}$
Age 1 Fish)	φ	7.488	$R_{GG} = \frac{1}{R_0 \phi (1-h) + (5h-1)SS_{GG}}$
Length (mm) to Weight (kg)	а	0.0000006	$W = a I^b$
Relationship	b	2.867	W = dL
Migration Speed (in grid	α	0.8	$S = \beta^{\alpha} \frac{1}{1 - x^{\alpha - 1} e^{-\beta x}}$
cells per simulation day):			$(\alpha - 1)!^{\alpha}$
gamma distribution	β	0.3	where $x = U(0,1)$
Biased Random Walk			
Exponential Distribution			
Shape Parameter	C	0.9	
Terminal Age (years)			
		40	
Starting Abundance (number	of fish)	1.038.780	

Process	Parameter	Red Snapper	Equation
	σ_0^2 (partial		$\gamma_z(h) =$
Spherical Variogram:	sill)	0.00001	$\left(c_n + \sigma_0^2 \left[\frac{3}{2}\frac{h}{h} - \frac{1}{2}\left(\frac{h}{h}\right)^3\right], \ 0 < h < a_0$
Spatial Distribution of	a_0 (range)	0	$\begin{bmatrix} a_1 & a_2 & a_1 \\ a_1 & a_2 & a_1 \end{bmatrix}, \begin{bmatrix} a_1 & a_2 & a_2 \\ a_1 & a_2 & a_2 \end{bmatrix}, \begin{bmatrix} a_1 & a_2 & a_2 \\ a_1 & a_2 & a_2 \end{bmatrix}$
Abundance (kilometers)	c _n (nugget)	0	where: $c_0 = c_n + \sigma_0^2$
use Dortolonffu Crowth	L∞	34.522	
(inches)	k	0.220	
(incres)	t _o	0.366	$L_t = L_{\infty} (1 - e^{-k(t - t_0)})$
	M∞	1.000	
Logistic Maturity at Length	k	0.012	$M_L = \frac{M_{\infty}}{1 + \frac{k(l-x)}{2}}$
(mm)	γ	199.214	$1 + e^{-\kappa(L-\gamma)}$
Spawning Stock Biomass (batch fecundity, using	а	0.1681	$SS_{ps} = \sum_{alm}^{n} (alm^{b})$
length <i>L</i> in inches)	Ь	5.57	$\sum_{N=0}^{N=0} (N^{-1}N^{-1})^{-1}$
Spawning Stock Biomass at			$\sum_{n=1}^{n} (x_{n}, y_{n})$
the Terminal Age (batch	a	0.1681	$5530_{\rm RS} = \sum (aL30_{\rm N}^{-1})$
<i>L</i> in inches at age 30)	Ь	5.57	where: $L30 = L_{\infty}(1 - e^{-k(30 - t_0)})$
Doverton and Helt	R ₀	6,585,000	$\alpha * SS_{RS}$
Recruitment (Number of			$R_{\rm RC} = R_{\rm o} \frac{\overline{\rm SS30}_{\rm RS}}{\overline{\rm SS30}_{\rm RS}}$
Age 0 Fish)	a	151	$1 + \frac{(\alpha - 1) * SS_{RS}}{SS30_{RS}}$
Length (inches) to Weight	a	0.0004398	, ,
(pounds) Relationship	b	3.056	$W = aL^b$
	~	0.6	1 $\alpha - 1$ βr
Migration Speed (in grid	u	0.0	$S = \beta^{\alpha} \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-\beta x}$
	β	0.2	where $x = U(0,1)$
Biased Random Walk			
Exponential Distribution			
Shape Parameter	C	0.9	
Terminal Age (years)		24	
Starting Abundance (number of fish)		24	
		2,203,860	
Fraction of Fishing Mortality Not			
Explicitly Modeled (includes	recreational		
fishing mortality)			
		0.786	

Table S.4: Simulation model input parameters and associated biological functions for red snapper.

Table S.5: Age specific input parameters for red grouper. This was used to generate numbers at age using the starting abundance in the previous table and provide vectors of natural mortality and other fishing mortality at age.

Age	Probability of N at Age	M at Age	Total F at Age
1	0.26949	0.4943	0.001
2	0.21067	0.3391	0.015
3	0.15864	0.2681	0.027
4	0.11549	0.2277	0.038
5	0.08161	0.2018	0.071
6	0.05604	0.1840	0.118
7	0.03638	0.1712	0.116
8	0.02364	0.1616	0.132
9	0.01522	0.1542	0.124
10	0.00977	0.1484	0.114
11	0.00644	0.1438	0.112
12	0.00423	0.1401	0.113
13	0.00288	0.1371	0.113
14	0.00207	0.1347	0.114
15	0.00153	0.1327	0.115
16	0.00118	0.1310	0.115
17	0.00094	0.1296	0.115
18	0.00078	0.1284	0.116
19	0.00066	0.1274	0.116
20	0.00024	0.1266	0.116
21	0.00022	0.1266	0.116
22	0.00020	0.1266	0.116
23	0.00018	0.1266	0.116
24	0.00017	0.1266	0.116
25	0.00015	0.1266	0.116
26	0.00014	0.1266	0.116
27	0.00013	0.1266	0.116
28	0.00011	0.1266	0.116
29	0.00010	0.1266	0.116
30	0.00009	0.1266	0.116
31	0.00009	0.1266	0.116
32	0.00008	0.1266	0.116
33	0.00007	0.1266	0.116
34	0.00006	0.1266	0.116
35	0.00006	0.1266	0.116
36	0.00005	0.1266	0.116
37	0.00005	0.1266	0.116
38	0.00004	0.1266	0.116
39	0.00004	0.1266	0.116

40	0.00004	0.1266	0.116	

Table S.6: Age specific input parameters for gag grouper. This was used to generate numbers at age using the starting abundance in the previous table and provide vectors of natural mortality and other fishing mortality at age.

Age	Probability of N at Age	M at Age	Total F at Age
1	0.27957	0.5255	0.04
2	0.21053	0.3734	0.25
3	0.15284	0.292	0.56
4	0.10375	0.2394	0.79
5	0.06573	0.2018	0.92
6	0.04011	0.1733	0.91
7	0.02623	0.1507	0.79
8	0.01785	0.1324	0.63
9	0.01263	0.1171	0.49
10	0.00994	0.1041	0.39
11	0.00815	0.0931	0.31
12	0.01000	0.0834	0.25
13	0.00871	0.075	0.25
14	0.00759	0.0677	0.25
15	0.00662	0.0611	0.25
16	0.00578	0.0553	0.25
17	0.00505	0.0501	0.25
18	0.00441	0.0455	0.25
19	0.00385	0.0413	0.25
20	0.00336	0.0375	0.25
21	0.00294	0.0341	0.25
22	0.00257	0.0311	0.25
23	0.00225	0.0283	0.25
24	0.00196	0.0258	0.25
25	0.00172	0.0235	0.25
26	0.00150	0.0214	0.25
27	0.00131	0.0195	0.25
28	0.00115	0.0178	0.25
29	0.00100	0.0163	0.25
30	0.00088	0.0149	0.25

Table S.7: Age specific input parameters for mutton snapper. This was used to generate numbers at age using the starting abundance in the previous table and provide vectors of natural mortality and other fishing mortality at age.

Age	Probability of N at Age	M at Age	Recreational F at Age Only
1	0.29631	0.273	0.0116
2	0.20209	0.216	0.0634
3	0.13122	0.184	0.1656
4	0.08556	0.163	0.0449
5	0.06019	0.148	0.0314
6	0.04472	0.138	0.0254
7	0.03297	0.130	0.0206
8	0.02412	0.124	0.0154
9	0.01747	0.120	0.0123
10	0.01360	0.116	0.0117
11	0.01088	0.113	0.0110
12	0.00873	0.111	0.0110
13	0.00708	0.109	0.0104
14	0.00592	0.107	0.0096
15	0.00514	0.106	0.0093
16	0.00447	0.105	0.0091
17	0.00404	0.104	0.0090
18	0.00381	0.103	0.0090
19	0.00382	0.102	0.0090
20	0.00384	0.102	0.0089
21	0.00347	0.101	0.0086
22	0.00343	0.101	0.0086
23	0.00319	0.100	0.0086
24	0.00277	0.100	0.0084
25	0.00251	0.100	0.0084
26	0.00227	0.100	0.0084
27	0.00205	0.099	0.0084
28	0.00186	0.099	0.0084
29	0.00168	0.099	0.0084
30	0.00153	0.099	0.0084
31	0.00138	0.099	0.0084
32	0.00125	0.099	0.0084
33	0.00113	0.099	0.0084
34	0.00103	0.099	0.0084
35	0.00093	0.099	0.0084
36	0.00084	0.099	0.0084
37	0.00076	0.099	0.0084
38	0.00069	0.099	0.0084
39	0.00063	0.099	0.0084

40	0.00057	0.099	0.0084
----	---------	-------	--------

Table S.8: Age specific input parameters for red snapper. This was used to generate numbers at age using the starting abundance in the previous table and provide vectors of natural mortality and other fishing mortality at age.

A.c.o.	Drobability of N at Ago	M at Aga	Total E at Aga
Age	Probability of N at Age	ivi at Age	Total F at Age
1	0.4449	0.59	0.05
2	0.2573	0.10	0.06
3	0.1297	0.10	0.32
4	0.0499	0.10	1.03
0	0.0250	0.10	1.26
6	0.0153	0.10	1.04
7	0.0110	0.10	1.01
8	0.0107	0.10	0.77
9	0.0089	0.10	0.72
10	0.0072	0.10	0.63
11	0.0058	0.10	0.38
12	0.0049	0.10	0.39
13	0.0041	0.10	0.37
14	0.0036	0.10	0.39
15	0.0033	0.10	0.39
16	0.0030	0.10	0.39
17	0.0027	0.10	0.39
18	0.0024	0.10	0.39
19	0.0022	0.10	0.39
20	0.0020	0.10	0.39
21	0.0018	0.10	0.39
22	0.0016	0.10	0.39
23	0.0015	0.10	0.39
24	0.0013	0.10	0.39

Process and		Handline	Longline	
Distribution	Parameter	Vessels	Vessels	Distribution/Formula
Vessel Length	mean	3.51	3.77	
Vesser Length	st. dev.	0.19	0.16	Loghorman
Fuel Capacity	а	0.0028	0.0028	
FuerCapacity	b	3.32	3.32	
Fish Hold	mean	6.88	8.81	Lognormal
Capacity	st. dev.	0.98	0.18	Logilorina
Cruico Spood	mean	2.44	2.44	Lognormal
Cruise Speed	st. dev.	0.18	0.18	Lognomia
Red Grouper				Exponential
Fishing Power	mean	1.11	0.56	Ехропенца
Gag Grouper	b0	-0.39	0.2	
Fishing Power	b1	0.8	0.77	
Red Snapper				Exponential
Fishing Power	mean	0.71	0.71	
Mutton				
Snapper				Exponential
Fishing Power		0.00		· ·
(Handline)	mean	0.69	1.40	
Snanner	00		1.49	_
Fishing Power			-	
(Longline)	b1		0.68	
Explainatory	mean	3.46	3.18	
Effort	st. dev.	0.43	0.28	– Lognormal
Sites Fished in	mean	2.42	1.3	
a Dav	st dev	0.78	0.67	– Lognormal
Distance	50.000	0.70	0.07	
Between Sites	mean	1.95	3.45	Exponential
Daily Catch of				
Other Species	mean	112.7586	288.19	Exponential
	Zero			
Red Snapper	Allocation	0.51	0.31	
Allocation	200 Pounds	0.13	0.36	Uniform
Probabilities	2000			
	Pounds	0.36	0.32	
	Red			
	Grouper	0.08	0.5	
Probability of	Gag			See formulas and derivations on how
catching an	Grouper	0.24	0.42	this is calculated and used
individual fish				
	Red			
	Snapper 200	0.14	0.21	

Table S.9: Fishing vessel characteristic parameters and probability distributions or formulas.

	Pound Allocation			
	Red Snapper 2000 Pound Allocation	0.83	0.76	
	Mutton Snapper	0.02	0.3	
	Red Grouper	0.10	0.10	
Discard Mortality	Gag Grouper	See depth dependent formula	See depth dependent formula	$p = \frac{1}{1 + e^{-0.05865*((d*0.3048-45.5))}}$ Where d = depth in feet
Probability	Red Snapper	0.71	0.71	
	Mutton Snapper	0.15	1.0	
	Red Grouper	508	508	
Size Limit	Gag Grouper	610	610	
(mm)	Red Snapper	330	330	
	Mutton Snapper	406	406	
Number of Vessels in				
Fleet	N	290	74	

Table S.10: Final binomial logistic best model fit for the decision when to fish for the handline fleet in the Florida Panhandle. Likelihood ratio test for whether there was a difference between the initial full and final best model fits: p=0.14.

Coefficient	Estimate	Std. Error
Intercept	-2.149	0.344
Vessel Length	0.014	0.004
Shallow Water And Red Grouper Closed	-0.578	0.104
Red Snapper Closed	-0.983	0.058
Grouper Spawning Closure	-0.740	0.128
CPI Adjusted Diesel Price	-0.517	0.100
Vessel Use Frequency	0.024	0.001
Wind Speed Knots	-0.027	0.004

Table S.11: Final binomial logistic best model fit for the decision when to fish for the handline fleet on Florida's West Coast (not including the Florida Panhandle). Likelihood ratio test for whether there was a difference between the initial full and final best model fits: p=0.17.

Coefficient	Estimate	Std. Error
Intercept	-2.847	0.228
Spring	0.846	0.070
Summer	0.773	0.071
Winter	0.755	0.079
Shallow Water And Red Grouper Closed	-0.746	0.109
Red Snapper Closed	-0.108	0.043
Grouper Spawning Closure	-1.159	0.097
CPI Adjusted Diesel Price	-0.355	0.075
Vessel Use Frequency	0.049	0.001
Wind Speed Knots	-0.043	0.004
Weekend	-0.148	0.043

Table S.12: Final binomial logistic best model fit for the decision when to fish for all longline vessels. Likelihood ratio test for whether there was a difference between the initial full and final best model fits: p=0.83.

Coefficient	Estimate	Std. Error
Intercept	-3.626	0.136
Summer	0.439	0.108
Shallow Water And Red Grouper Closed	-1.406	0.189
Deep Water Grouper Closed	-0.380	0.103
Grouper Spawning Closure	-0.522	0.133
Vessel Use Frequency	0.050	0.005

Coefficient	Estimate	Std. Error	Significance
Site 37	0.136	0.139	
Site 38	0.389	0.144	**
Site 39	-0.887	0.269	***
Site 40	-0.052	0.169	
Site 41	-0.154	0.154	
Site 42	-0.977	0.256	* * *
Site 43	-0.316	0.192	
Site 44	-1.989	0.472	* * *
Site 45	-1.331	0.263	***
Site 46	-0.071	0.196	
Site 47	-1.611	0.445	* * *
Site 48	-1.881	0.481	***
Site 49	-3.077	1.016	**
Site 50	-1.346	0.367	***
Distance	-0.004	0.001	***
Expected Revenue: Red Grouper	0.075	0.034	*
Expected Revenue: Gag Grouper	-0.087	0.023	***
Habit	3.205	0.090	***

Table S.13: Final multinomial logistic best model fit for the decision where to fish for all handline vessels in the Florida Panhandle. Likelihood ratio test for whether there was a difference between the initial full and final best model fits: p=0.159.

Table S.14: Final multinomial logistic best model fit for the decision where to fish for all handline vessels in the Florida West coast proper (not including the Florida Panhandle). Likelihood ratio test for whether there was a difference between the initial full and final best model fits: p=0.204. Numbered locations for site choice correspond to the areas presented in Figure S.1 below, and represent the intersection of 20-meter depth contours with bands of equal, integer latitude and longitude.

Coefficient	Estimate	Std. Error	Significance
Site 2	-1.421	3.463	
Site 3	0.419	3.493	
Site 5	3.723	2.145	
Site 6	4.398	2.049	*
Site 7	4.193	2.781	
Site 8	2.301	2.397	
Site 9	1.045	2.442	
Site 10	4.922	2.027	*
Site 11	2.593	2.163	
Site 12	3.283	2.432	
Site 13	3.758	2.056	
Site 14	4.079	2.183	

Site 15	3.501	2.262	
Site 16	3.780	2.029	
Site 17	3.502	2.104	
Site 18	4.811	2.042	*
Site 19	3.666	2.096	
Site 20	4.453	2.065	*
Site 21	4.914	2.051	*
Site 22	5.124	2.038	*
Site 23	5.722	2.032	**
Site 24	4.581	2.069	*
Site 25	5.208	2.115	*
Site 26	5.412	2.014	**
Site 27	5.538	2.024	**
Site 28	5.666	2.025	**
Site 29	5.341	2.080	*
Site 30	5.591	2.022	**
Site 31	5.813	2.013	**
Site 32	4.967	2.033	*
Site 33	5.466	2.034	**
Site 33	3.047	2.139	
Site 35	6.012	2.019	**
Distance	-0.009	0.000	***
Expected Revenue: Red Grouper	-0.011	0.002	***
Habit	2.926	0.051	***
Site 2:Wind Speed	0.036	0.152	
Site 3:Wind Speed	-0.058	0.184	
Site 5:Wind Speed	-0.146	0.109	
Site 6:Wind Speed	-0.118	0.099	
Site 7:Wind Speed	-0.212	0.170	
Site 8:Wind Speed	-0.049	0.119	
Site 9:Wind Speed	0.009	0.115	
Site 10:Wind Speed	-0.098	0.098	
Site 11:Wind Speed	-0.100	0.106	
Site 12:Wind Speed	-0.159	0.131	
Site 13:Wind Speed	-0.094	0.100	
Site 14:Wind Speed	-0.150	0.111	
Site 15:Wind Speed	-0.130	0.116	
Site 16:Wind Speed	-0.127	0.098	
Site 17:Wind Speed	-0.132	0.105	
Site 18:Wind Speed	-0.160	0.100	
Site 19:Wind Speed	-0.119	0.103	
Site 20:Wind Speed	-0.151	0.101	
Site 21:Wind Speed	-0.237	0.102	*
Site 22:Wind Speed	-0.204	0.100	*
Site 23:Wind Speed	-0.231	0.099	*

	Site 24:Wind Speed	-0.186	0.102	
	Site 25:Wind Speed	-0.244	0.109	*
	Site 26:Wind Speed	-0.185	0.097	
	Site 27:Wind Speed	-0.193	0.098	*
	Site 28:Wind Speed	-0.182	0.098	
	Site 29:Wind Speed	-0.224	0.105	*
	Site 30:Wind Speed	-0.158	0.098	
	Site 31:Wind Speed	-0.160	0.097	
	Site 32:Wind Speed	-0.166	0.099	
	Site 33:Wind Speed	-0.197	0.099	*
	Site 33:Wind Speed	-0.121	0.106	
_	Site 35:Wind Speed	-0.193	0.098	*

Table S.15: Final multinomial logistic best model fit for the decision where to fish for all longline vessels. Likelihood ratio test for whether there was a difference between the initial full and final best model fits: p=0.889. Numbered locations for site choice correspond to the areas presented in Figure S.1 below, and represent the intersection of 20-meter depth contours with bands of equal, integer latitude and longitude.

Coefficient	Estimate	Std. Error	Significance
Site 7	-8.332	6.950	
Site 8	-8.507	4.878	
Site 9	-7.292	4.412	
Site 10	-6.000	4.272	
Site 11	-4.334	4.374	
Site 12	-4.484	5.047	
Site 13	-8.561	4.867	
Site 14	-3.518	4.287	
Site 15	-2.152	4.572	
Site 16	-2.281	4.037	
Site 17	-5.930	4.110	
Site 18	-2.561	4.646	
Site 19	-5.182	4.277	
Site 20	-4.349	4.131	
Site 21	-3.287	4.045	
Site 22	-5.477	4.055	
Site 23	-5.114	4.155	
Site 24	-2.888	4.150	
Site 25	-2.721	4.174	
Site 26	-4.642	4.240	
Site 27	-10.873	4.350	*
Site 28	-6.086	4.499	
Site 29	-7.383	5.103	

Site 30	-3.964	4.624	
Site 31	-12.951	6.222	*
Site 32	-8.980	5.957	
Site 35	-23.085	14.035	
Site 36	-112.490	72.028	
Site 40	-10.668	8.340	
Site 45	-9.633	11.078	
Site 47	-21.708	15.143	
Distance	-0.006	0.001	***
Habit	2.166	0.074	***
Site 7:Real Fuel Price	2.665	2.472	
Site 8:Real Fuel Price	4.227	1.773	*
Site 9:Real Fuel Price	3.186	1.640	
Site 10:Real Fuel Price	3.142	1.597	*
Site 11:Real Fuel Price	2.433	1.632	
Site 12:Real Fuel Price	2.346	1.864	
Site 13:Real Fuel Price	3.555	1.779	*
Site 14:Real Fuel Price	2.237	1.615	
Site 15:Real Fuel Price	1.434	1.712	
Site 16:Real Fuel Price	1.762	1.530	
Site 17:Real Fuel Price	3.193	1.551	*
Site 18:Real Fuel Price	1.686	1.746	
Site 19:Real Fuel Price	2.825	1.605	•
Site 20:Real Fuel Price	2.438	1.555	
Site 21:Real Fuel Price	2.034	1.532	
Site 22:Real Fuel Price	3.070	1.535	*
Site 23:Real Fuel Price	2.645	1.564	•
Site 24:Real Fuel Price	2.169	1.567	
Site 25:Real Fuel Price	2.141	1.574	
Site 26:Real Fuel Price	2.434	1.597	
Site 27:Real Fuel Price	4.856	1.617	**
Site 28:Real Fuel Price	3.238	1.669	
Site 29:Real Fuel Price	2.998	1.857	
Site 30:Real Fuel Price	3.966	1.718	*
Site 31:Real Fuel Price	4.982	2.156	*
Site 32:Real Fuel Price	4.098	2.145	•
Site 35:Real Fuel Price	7.401	4.303	•
Site 36:Real Fuel Price	31.096	18.480	•
Site 40:Real Fuel Price	3.676	2.867	
Site 45:Real Fuel Price	6.333	3.663	•
Site 47:Real Fuel Price	7.835	4.660	•
Site 7:Wind Speed	0.033	0.097	
Site 8:Wind Speed	-0.145	0.087	•
Site 9:Wind Speed	-0.004	0.068	
Site 10:Wind Speed	-0.052	0.067	

Site 11:Wind Speed	-0.093	0.074		
Site 12:Wind Speed	-0.113	0.089		
Site 13:Wind Speed	-0.054	0.078		
Site 14:Wind Speed	-0.087	0.069		
Site 15:Wind Speed	-0.069	0.074		
Site 16:Wind Speed	-0.081	0.062		
Site 17:Wind Speed	-0.109	0.065	•	
Site 18:Wind Speed	-0.142	0.086	•	
Site 19:Wind Speed	-0.117	0.068	•	
Site 20:Wind Speed	-0.072	0.063		
Site 21:Wind Speed	-0.103	0.062	•	
Site 22:Wind Speed	-0.133	0.063	*	
Site 23:Wind Speed	-0.099	0.066		
Site 24:Wind Speed	-0.145	0.067	*	
Site 25:Wind Speed	-0.144	0.067	*	
Site 26:Wind Speed	-0.108	0.068		
Site 27:Wind Speed	-0.137	0.070		
Site 28:Wind Speed	-0.147	0.075	•	
Site 29:Wind Speed	-0.053	0.084		
Site 30:Wind Speed	-0.501	0.118	* * *	
Site 31:Wind Speed	-0.097	0.108		
Site 32:Wind Speed	-0.188	0.126		
Site 35:Wind Speed	-0.010	0.177		
Site 36:Wind Speed	0.471	0.389		
Site 40:Wind Speed	-0.022	0.126		
Site 45:Wind Speed	-0.771	0.556		
Site 47:Wind Speed	-0.096	0.257		

Table S.16: Final binomial logistic best model fit for the decision when to return to port for the handline fleet in the Florida Panhandle. Likelihood ratio test for whether there was a difference between the initial full and final best model fits: p=0.38. Numbered locations for site choice correspond to the areas presented in Figure S.1 below, and represent the intersection of 20-meter depth contours with bands of equal, integer latitude and longitude.

Coefficient	Estimate	Std. Error
Intercept	-1.665	0.506
Vessel Length	-0.043	0.005
Shallow Water And Red Grouper Closed	0.748	0.150
Red Snapper Closed	-0.238	0.082
Deep Water Grouper Closed	-0.226	0.085
Grouper Spawning Closure	0.516	0.184
CPI Adjusted Price of Red Grouper	0.423	0.179
Ratio Catch To Fish Hold	3.679	0.149
Weekend	-0.316	0.086

Table S.17: Final binomial logistic best model fit for the decision when to return to port for the handline fleet in the Florida west coast proper (excluding the Florida Panhandle). Likelihood ratio test for whether there was a difference between the initial full and final best model fits: p=0.16.

Coefficient	Estimate	Std. Error
Intercept	-2.441	0.374
Vessel Length	-0.022	0.005
Shallow Water And Red Grouper Closed	0.447	0.119
Red Snapper Closed	0.092	0.049
Grouper Spawning Closure	0.346	0.122
CPI Adjusted Diesel Price	-0.295	0.075
CPI Adjusted Price of Red Grouper	0.201	0.112
Ratio Catch To Fish Hold	4.643	0.088
Weekend	-0.221	0.051

Table S.18: Final binomial logistic best model fit for the decision when to return to port for all longline vessels. Likelihood ratio test for whether there was a difference between the initial full and final best model fits: p=0.737.

Coefficient	Estimate	Std. Error
Intercept	-2.766	0.249
Vessel Length	-0.032	0.005
Shallow Water And Red Grouper Closed	0.582	0.223
Tilefish Closed	-0.402	0.103
Deep Water Grouper Closed	0.416	0.091
Grouper Spawning Closure	0.572	0.168
Ratio Catch To Fish Hold	4.797	0.150

Stock Synthesis Assessment Model Technical Components Utilized

The following is a description of the Stock Synthesis (version 3.24P) assessment model developed for each species (i.e. the functions selected, how population was structured, etc.). Table S.19 and the equations that follow describe the options and mathematics that were selected for its implementation in this study. A complete description of all functions within Stock Synthesis and their generalizable forms can be found in the Appendix of:

Methot, R. D. & Wetzel, C. R. (2013). Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fisheries Research, 142, 86-99. doi:10.1016/j.fishres.2012.10.012.

Table S.19:	Various	configurations	of the	Stock	Synthesis	assessment	model	trialed for	each
species to d	letermine	a base model.							

Red Grouper Stock Synthesis Model Selection								
	Negative		Number					
	Log-	Number of	of Data			Delta		
Run	likelihood	Parameters	Points	AIC	AICc	AICc		
Used a double-normal								
function to represent both								
handline and longline								
selectivity at length;								
estimated steepness stock-								
recruitment function								
parameter (h), virgin recruits								
(\mathbf{R}_0) , and sequential								
hermaphroditism function								
parameters.	3,464	79	1,040	7,086	7,099	4,106		
Same as above except fixed								
steepness stock-recruitment								
function parameter (h) to the								
value used in the simulation.	3,470	79	1,040	7,098	7,111	4,119		
Same as above except								
estimated stock-recruitment								
function error and estimated								
steepness stock-recruitment								
function parameter (h).	3,353	80	1,040	6,866	6,879	3,887		
Same as above except fixed								
steepness stock-recruitment								
function parameter (h) to the								
value used in the simulation,								
fixed stock-recruitment								
function error, estimated								
virgin recruits (R ₀).	1,412	78	1,040	2,980	2,992	0		
Gag	Grouper Sto	ock Synthesis	Model Sele	<u>ction</u>				

	Negative	Number of	Number			Dalta
Run	Log- likelihood	Number of Parameters	Points	AIC	AICc	AICc
Estimated sequential	intennoou	T ur unice i b	I Units	me	mee	mee
hermaphroditism function						
parameters, virgin recruits						
(R_0) , and steepness stock-						
recruitment function						
parameter (h); used double-						
normal function to represent						
handline selectivity and						
logistic function to represent						
longline selectivity at						
length.	10,455	69	1,040	21,047	21,057	9,435
Same as above except fixed						
steepness stock-recruitment						
function parameter (h);						
Estimated L_{min} and L_{∞}						
growth parameters.	9,287	74	1,040	18,721	18,733	7,111
Same as above except						
estimated gender specific						
L _{min} growth parameters.	8,144	75	1,040	16,438	16,450	4,828
Same as above except fixed						
gender specific L_{min} and L_{∞}						
growth parameters and						
estimated steepness stock-						
recruitment function	7 (22)	71	1.0.40	15.007	15 200	
parameter (h).	7,623	/1	1,040	15,387	15,398	3,776
Same as above except						
estimated the same L _{min} and						
L_{∞} growth parameters for	5 729	77	1.040	11 (00	11 (22)	0
both genders.	5,728		1,040	11,609	11,622	0
<u>Red</u>	Snapper Sto	<u>ck Synthesis I</u>	Viodel Sele	<u>ction</u>		
	Negative	Number of	number			Dolto
Dun	Log-	Number of Paramatars	OI Data Doints	AIC	AICo	
Fixed growth parameters	IIKelliloou	1 al alletel s	TUIILS	AIC	AICC	AICC
and steepness stock-						
recruitment function						
parameter (h): estimated						
virgin recruits (\mathbf{R}_0) : used the						
double normal function to						
estimate selectivity at length						
for both handline and						
longline fleets.	6,479	65	1,040	13,089	13,097	8,914

Same as above except used						
logistic selectivity for						
longline fleet.	2,613	77	1,040	5,381	5,393	1,209
Estimated L_{min} and L_{∞}						
growth parameters, virgin						
recruits (R_0) , and steepness						
stock-recruitment function						
parameter (h); Used double-						
normal function to represent						
handline and longline						
selectivity at length.	2,064	73	1,040	4,274	4,285	102
Fixed L_{min} and L_{∞} growth						
parameters, and fixed						
steepness stock-recruitment						
function parameter (h);						
estimated virgin recruits						
(R_0) ; used double-normal						
function to represent						
handline and longline						
selectivity at length.	2,022	65	1,040	4,175	4,184	0
Mutto	n Snapper S	tock Synthesis	s Model Se	lection		
	Negative		Number			
	Log-	Number of	of Data			Delta
	0					
Run	likelihood	Parameters	Points	AIC	AICc	AICc
RunFixed L_{min} and L_{∞} growth	likelihood	Parameters	Points	AIC	AICc	AICc
RunFixed L_{min} and L_{∞} growthparameters; estimated virgin	likelihood	Parameters	Points	AIC	AICc	AICc
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepness	likelihood	Parameters	Points	AIC	AICc	AICc
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment function	likelihood	Parameters	Points	AIC	AICc	AICc
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used double	likelihood	Parameters	Points	AIC	AICc	AICc
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimate	likelihood	Parameters	Points	AIC	AICc	AICc
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for both	likelihood	Parameters	Points	AIC	AICc	AICc
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.	likelihood 75,396	Parameters 144	Points 1,040	AIC 151,080	AICc 151,127	AICc 148,037
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except used	likelihood 75,396	Parameters 144	Points 1,040	AIC 151,080	AICc 151,127	AICc 148,037
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logistic	likelihood 75,396	Parameters 144	Points 1,040	AIC 151,080	AICc 151,127	AICc 148,037
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handline	likelihood 75,396	Parameters 144	Points 1,040	AIC 151,080	AICc 151,127	AICc 148,037
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handlineselectivity and logistic	likelihood 75,396	Parameters 144	Points 1,040	AIC 151,080	AICc 151,127	AICc 148,037
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handlineselectivity and logisticfunction for longline	likelihood 75,396	Parameters 144	Points 1,040	AIC 151,080	AICc 151,127	AICc 148,037
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handlineselectivity and logisticfunction for longlineselectivity.	likelihood 75,396 38,047	Parameters 144 68	Points 1,040 1,040	AIC 151,080 76,231	AICc 151,127 76,240	AICc 148,037 73,151
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handlineselectivity and logisticfunction for longlineselectivity.Same as above, except used	likelihood 75,396 38,047	Parameters 144 68	Points 1,040 1,040	AIC 151,080 76,231	AICc 151,127 76,240	AICc 148,037 73,151
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handlineselectivity and logisticfunction for longlineselectivity.Same as above, except useddouble normal to estimate	likelihood 75,396 38,047	Parameters 144 68	Points 1,040 1,040	AIC 151,080 76,231	AICc 151,127 76,240	AICc 148,037 73,151
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handlineselectivity.Same as above, except usedexponential-logisticduction for longlineselectivity.Same as above, except useddouble normal to estimateselectivity at length for both	likelihood 75,396 38,047	Parameters 144 68	Points 1,040 1,040	AIC 151,080 76,231	AICc 151,127 76,240	AICc 148,037 73,151
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handlineselectivity.Same as above, except usedexponential-logisticduction for longlineselectivity.Same as above, except useddouble normal to estimateselectivity at length for bothhandline and longline fleets.	likelihood 75,396 38,047 4,380	Parameters 144 68 78	Points 1,040 1,040 1,040	AIC 151,080 76,231 8,916	AICc 151,127 76,240 8,929	AICc 148,037 73,151 5,839
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handlineselectivity and logisticfunction for longlineselectivity.Same as above, except useddouble normal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except useddouble normal to estimateselectivity at length for bothhandline and longline fleets.Same as above except	likelihood 75,396 38,047 4,380	Parameters 144 68 78	Points 1,040 1,040	AIC 151,080 76,231 8,916	AICc 151,127 76,240 8,929	AICc 148,037 73,151 5,839
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handlineselectivity.Same as above, except usedexponential-logisticdustribution for longlineselectivity.Same as above, except useddouble normal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except useddouble normal to estimateselectivity at length for bothhandline and longline fleets.Same as above exceptestimated stock-recruitment	likelihood 75,396 38,047 4,380	Parameters 144 68 78	Points 1,040 1,040 1,040	AIC 151,080 76,231 8,916	AICc 151,127 76,240 8,929	AICc 148,037 73,151 5,839
RunFixed L_{min} and L_{∞} growthparameters; estimated virginrecruits (R_0) and steepnessstock-recruitment functionparameter (h); used doublenormal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except usedexponential-logisticdistribution for handlineselectivity and logisticfunction for longlineselectivity.Same as above, except useddouble normal to estimateselectivity at length for bothhandline and longline fleets.Same as above, except useddouble normal to estimateselectivity at length for bothhandline and longline fleets.Same as above exceptestimated stock-recruitmentfunction error, and used	likelihood 75,396 38,047 4,380	Parameters 144 68 78	Points 1,040 1,040	AIC 151,080 76,231 8,916	AICc 151,127 76,240 8,929	AICc 148,037 73,151 5,839

distribution for handline selectivity and double- normal function for longline selectivity						
Fixed steepness stock-						
recruitment function						
parameter (h), L_{min} and L_{∞}						
growth parameters, and						
stock-recruitment function						
error; estimated virgin						
recruits (R_0); used double						
normal to estimate						
selectivity at length for both						
handline and longline fleets.	1,470	70	1,040	3,079	3,090	0

When following the notation below, please note that neither time varying components to processes (such as growth, catchability, selectivity and retention) nor time varying parameters were used in the assessment because they were not represented in the simulation model. In addition, although two genders were modeled, no differences in selectivity or retention were considered between genders, and no growth morphs were modeled.

Population Model

Population Structure and Mortality

The Stock Synthesis assessment model represents the population numbers-at-age at the start of the time series, numbers of recruits each year, and the survival of each age group as it moves through the population. In our application, fishing mortality (F) was modeled at age (a) for each fishery (j) and year (y) and adjusted by selectivity (s) at age and for each fishery (Equation S.1). Fishing mortality was modeled as continuous F.

$$F_{yaj} = f_{yj} s_{aj}$$

(S.1)

Total mortality rate at age each year was the sum of natural mortality at age and fishing mortality at age for each fleet (Equation S.2). A vector of natural mortality at age was provided to the stock assessment from empirical studies and was the same vector at age used in the agent-based simulation model.

$$Z_{ya} = M_a + F_{yaj} \tag{S.2}$$

If the population numbers at the start of year y for age a was equal to N_{ya} , then the mean numbers of fish each age and year was equal to Equation S.3.

$$\overline{N}_{ya} = N_{ya} (1 - e^{-Z_{ya}}) / Z_{ya}$$
(S.3)

Catch in numbers c was equal to the product of average abundance and fishing mortality at age each year (Equation S.4), while catch in biomass C was the product of catch in numbers and the average weight at age W that year for that fishery or survey (Equation S.5).

$$c_{yaj} = \overline{N}_{ya_a} F_{yaj}$$

$$C_{yaj} = c_{yaj} W_{yaj}$$
(S.4)
(S.5)

Survival to the next year and age, was represented by Equation S.6 for ages a that are not the maximum age modeled, and Equation S.7 when calculating survivors to the maximum age modeled, A.

$$N_{y+1,a+1} = N_{ya}e^{-Z_{ya}}$$
(S.6)

$$N_{y+1,A} = N_{y,A-1}e^{-z_{y,A-1}} + N_{yA}e^{-z_{yA}}$$
(S.7)

Within Stock Synthesis, numbers at length and/or age were modeled in discrete length or age groups. The age group assumed for the implementation of Stock Synthesis in this study was a year (annual) while the length group or bin size selected was two centimeters. The abundance of fish at age and size within the population was represented within each of these groups. An age-length key ($\varphi_{a,l}$) was used within Stock Synthesis to distribute the proportion of fish in each age group (*a*) across different the length groups (*l*) that occupy that age group. The user defines the length and age groups, and fish were distributed across length groups following a normal distribution. Let L_{min} represent the lower limit of the smallest length group (l_{min}), L_{max} represent the lower limit of the largest length group (l_{max}), Φ the standard normal cumulative density function, \overline{L} the mean size in the middle of the season at age *a*, and σ_a equal to the standard deviation of the length of a fish of age *a* (i.e. the variation in size at age as a function of age; Equation S.8).

$$\varphi_{a,l} = \begin{cases} \Phi\left(\frac{L_{min} - \overline{L}_a}{\sigma_a}\right) & \text{for } l = 1\\ \Phi\left(\frac{L_{l+1} - \overline{L}_a}{\sigma_a}\right) - \Phi\left(\frac{L_l - \overline{L}_a}{\sigma_a}\right) & \text{for } 1 < l < l_{max}\\ \Phi\left(\frac{L_{max} - \overline{L}_a}{\sigma_a}\right) & \text{for } l = l_{max} \end{cases}$$
(S.8)

Life History

Growth was assumed to be continuous throughout the year and followed a von Bertalanffy function (Equation S.9), where L_t was the length at age t, L_{∞} was the asymptotic length, k was the growth rate, t_0 was the y-intercept of the curve, and L_1 was the length at age t_0 . $L_t = L_{\infty} + (L_1 - L_{\infty})e^{-k(t-t_0)}$ (S.9)

Weight at age was estimated from the mean length at each age group, where α and β are parameters (Equation S.10).

$$W_a = \alpha L_a{}^{\beta}$$

(S.10)

Maturity was modeled using a length-based logistic function (Equation S.11), where M_L was the maturity at length L, M_{∞} was the asymptotic maturity, k was the maturity rate, and γ was the y-intercept of the curve.

$$M_L = \frac{M_\infty}{1 + e^{-k(L-\gamma)}} \tag{S.11}$$

Spawning stock biomass was measured as the total weight of mature female fish, and the stock-recruitment function followed a Beverton-Holt relationship (Equation S.12), where R was the number of recruited fish, h was the steepness parameter, R_0 was the number of recruited fish when the population is at virgin, and SS was the spawning stock biomass.

$$R = \frac{4hR_0SS}{R_0\phi(1-h) + (5h-1)SS}$$
(S.12)

The parameter \emptyset represented the virgin spawning fish per recruit (Equation S.13), such that E_{age} was the product of maturity and fecundity at each age, a_r was the age of recruitment, MaxAge was the maximum age modeled, and M was natural maturity at age j. A fecundity at age vector was provided to the assessment model from empirical studies.

$$\phi = \sum_{age=a_r}^{MaxAge} E_{age} \prod_{j=a_r}^{age-1} e^{-M_j}$$
(S.13)

Sequential hermaphroditism was modeled in both the simulation and the assessment for the two grouper species studied, red grouper and gag grouper. For these two grouper species, sequential hermaphroditism was modeled in Stock Synthesis by fitting a three-parameter logistic function (Equation S.14) to determine the proportion female (P_{female}) at age (a), where δ represented the inflection point, σ represented the standard deviation, ω represented the maximum value, a_{max} is the maximum age modeled, a_{min} is the minimum age modeled, and $\Phi_{\mu,\sigma}^2(x)$ is the cumulative normal distribution of x, where x is the value of whatever expression is inside the parenthesis.

$$P_{female} = \frac{\omega}{\Phi_{0,1}\left(\frac{a_{max}-\delta}{\sigma}\right) - \Phi_{0,1}\left(\frac{a_{min}-\delta}{\sigma}\right)} \Phi_{0,1}\left(\frac{a-\delta}{\sigma}\right) - \Phi_{0,1}\left(\frac{a_{min}-\delta}{\sigma}\right)$$
(S.14)

Selectivity and Retention

Three different functions were used to represent selectivity at length (S_L), depending on the fleet and species being modeled (see Table 1 in the main text): a logistic function, exponentiallogistic, or double normal function. Logistic selectivity (Equation S.15) was a two-parameter function where β_1 represented the intercept and β_2 represented the slope.

$$S_L = \frac{1}{1 + e^{(-\ln(19)*((L-\beta_1)/\beta_2))}}$$
(S.15)

The exponential-logistic selectivity function was a four-parameter function (Equation S.16) bounded by an *a priori* selected minimum fish size (L_{min}) and maximum fish size (L_{max}). Let ρ_1 represent the ascending rate, ρ_2 represent the peak as a fraction of the way between L_{min} and L_{max} , $\rho_3 = L_{min} + (\rho_2 * (L_{max} - L_{min}))$, and ρ_4 represent the descending rate.

$$S_L = \frac{e^{\rho_1 + 163}}{1 - \rho_3 * (1 - e^{\rho_1 * (\rho_3 - L)})}$$
(S.16)

The double normal selectivity function (Equation S.17) provided flexible options to shape selectivity as either dome-shaped (asymptotic), plateaued, or with a descending limb. $S_L = asc_L(1 - J_{1,L}) + J_{1,L} * ((1 - J_{2,L}) + J_{2,L} * dsc_L)$ (S.17)

This was accomplished using a series of separate sub-functions that define the ascending (*asc*) and descending limbs (*dsc*) separately and connects them using two logistic joiner functions (*J*). Six parameters defined this relationship: v_1 was the peak size for the plateau, v_2 was the width of the plateau, v_3 was the ascending limb width, v_4 was the descending limb width, v_5 was the selectivity at the first bin, and v_6 was the selectivity at the last bin. First, we needed to compute the L_{peak} value, which was the length at which selectivity equaled one (Equation S.18), where L_{width} represented the width of the population length bins that the user defined.

$$L_{peak} = \rho_1 + L_{width} + \left(\frac{0.99L_{max} - \rho_1 - L_{width}}{1 + e^{-\rho_1}}\right)$$
(S.18)

With this value calculated, the ascending and descending limbs of the curve were calculated as per Equations S.19 and S.20.

$$asc_{L} = (1 + e^{-\rho_{5}})^{-1} + (1 - (1 + e^{-\rho_{5}})^{-1}) \frac{e^{\left(\frac{-(L-\rho_{1})^{2}}{e^{\rho_{3}}}\right)} - e^{\left(\frac{(L_{min}-\rho_{1})^{2}}{e^{\rho_{3}}}\right)}}{1 - e^{\left(\frac{(L_{min}-\rho_{1})^{2}}{e^{\rho_{3}}}\right)}}$$
(S.19)

$$dsc_{L} = 1 + ((1 + e^{-\rho_{6}})^{-1} - 1) \frac{e^{\left(\frac{-(L-Lpeak)}{e^{\rho_{4}}}\right)_{-1}}}{e^{\left(\frac{-(L_{max} - L_{peak})^{2}}{e^{\rho_{4}}}\right)_{-1}}}$$
(S.20)

The joiner functions for the ascending and descending components were calculated in Equations S.21 and S.22 respectfully.

$$J_{1,L} = \frac{1}{1+e^{\left(-20*\frac{L-v_1}{1+|L-v_1|}\right)}}$$
(S.21)

$$J_{2,L} = \frac{1}{1 + e^{\left(-20*\frac{L-L_{peak}}{1 + |L-L_{peak}|}\right)}}$$
(S.22)

A logistic fishery retention function was used to proportion the catch into discarded and retained components ($P_{retention}$), where ς_1 represented the inflection, ς_2 represented the slope, and ς_3 represented the asymptote (Equation S.23).

$$P_{retention} = \frac{\varsigma_3}{1 + e^{\left(-\frac{(L-\varsigma_1)}{\varsigma_2}\right)}}$$
(S.23)

Observation Model

The observation model within Stock Synthesis generated expected values for the sampled data by adjusting the parameters and functions that relate the population model to the sampled data. The sampled data from the agent-based model included in the Stock Synthesis implementations were total landings time series for each fishery (commercial handline, commercial longline, and recreational), indices of biomass for the commercial handline and longline fisheries, discard data in numbers of fish per year, and the catch at length from the simulated commercial handline and longline fisheries.

The catch at length for each year (y), fleet (f), and length group (l) was the product of selectivity $(S_{l,f})$, age-length key $(\varphi_{a,l})$, and the numbers at age for that year as represented in Equation S.24, where the *timing* represented when that survey occurred during the year and was specified by the user. In our implementation of the assessment model, all surveys were assumed to take place in the middle of the year because in the simulation, the fishing operations that generated the catch per unit effort survey indices occurred year-round.

$$C_{y,f,l} = S_{l,f}\varphi_{a,l}N_{a,y}e^{-timing(Z_{y,a,f})}$$
(S.24)
In order to fit to the biomass indices, the biomass available for observation each year (y) by each

In order to fit to the biomass indices, the biomass available for observation each year (y) by each fleet (f) as a function of their catch was represented by Equation S.25.

(S.25)

$$B_{y,f} = \sum_{l=1}^{L_{max}} w_l \sum_{a=0}^{A} C_{y,f,a}$$

The expected biomass to be observed by each fishery or survey was related to the available population abundance by the catchability coefficient for that fishery or survey (Q_f) as per Equation S.26. The catchability coefficient in all applications of Stock Synthesis in this study was modeled as directly proportional to biomass. The catchability parameter was set as a scaling factor such that the estimate was median unbiased.

$$E(B_{y,f}) = Q_f B_{y,f} \tag{S.26}$$

The expected value for the length composition observation was derived from the age and length population predictions by filtering the population at length and age through retention and selectivity processes. Data and population length bins in the implementation of Stock Synthesis used in this study were selected to be the same for each species modeled and were both divided into two-centimeter increments. The expected size compositions of fish catch within a given length bin l during year y for fishery or survey f, is represented by Equation S.27 where A was

the maximum age, l_{min} was the minimum length bin, l_{max} was the maximum length bin, and x was a small constant added to each bin specified by the user.

$$E(P_{y,f,a,l}) = \frac{\sum_{a=0}^{A} C_{y,f,a,l} + x}{\sum_{l=1}^{l_{max}} \sum_{a=0}^{A} C_{y,f,a,l} + x}$$
(S.27)

The expected size compositions were compressed at the tails according to Equation S.28 in order to properly fit the compositions from the data.

$$E(P_{y,f,a,l}) = \begin{cases} 0 & \text{for } l < l_{min} \\ \sum_{l \le l_{min}} E(P_{y,f,a,l}) & \text{for } l = l_{min} \\ E(P_{y,f,a,l}) & \text{for } l = l_{max} \\ \sum_{l \le l_{max}} E(P_{y,f,a,l}) & \text{for } l = l_{max} \\ 0 & \text{for } l > l_{max} \end{cases}$$
(S.28)

Statistical Model

The likelihood function for Stock Synthesis included the contributions from catch, abundance indices, discards, length composition, and recruitment. No priors were used on any parameters in this implementation, and parameters were not allowed to vary as random deviates over time. The objective function (*L*) was the weighted sum of the individual likelihood components ($L_{i,f}$), where each component reflected model fits to each data vector (*i*) and each fishery or survey (*f*). Deviations in recruitment were allowed to be estimated by the model and were represented in the likelihood function by the term L_R . In this study, catch, biomass indices, discards, length composition, and recruitment were all likelihood components, and all were weighted equally ($\omega_{i,f}$) in their likelihood contribution (Equation S.29).

$$L = \sum_{i=0}^{I} \sum_{f=1}^{A_f} \omega_{i,f} L_{i,f} + \omega_R L_R$$
(S.27)

Individual likelihood components (*i*) for fits to indices of biomass (*I*), discards (*D*), length composition (*LC*), catch (*C*), initial equilibrium catch ($C_{t=0}$), and recruitment deviations (*RD*) were provided in Equations S.28 through S.32 respectfully. The contribution of the biomass or abundance indices to the log-likelihood function was not bias corrected in our implementation (as some versions of Stock Synthesis provide this option), and was represented in Equation S.28, where *I* was an observed index of abundance for year *y* and fishery *f*, *Q* was catchability, *B* was biomass available to that fishery or survey, and σ^2 represented the standard deviation of the index estimate each year. This study assumed a lognormal error distribution for catch per unit effort index observations.

$$L_{l,f} = N(\ln(\sigma)) + \sum_{y=1}^{N_y} \frac{(\ln(I_{y,f}) - \ln(Q_f B_{y,f}))^2}{2\sigma^2}$$
(S.28)

The contribution of the discard fit to the log-likelihood was based on the assumption of a tdistribution where df is the degrees of freedom, $d_{y,f}$ was the observed discard for year y and fleet f, $\widehat{d_{y,f}}$ was the expected discard for year y and fleet f, $\sigma_{y,f}$ was the standard deviation of the discard observations, and $\tilde{\sigma}$ was the standard deviation offset value specified by the user as an additional amount of variance to add to the coefficient of variation; this would be added to the standard error if specified. In our implementation, we did not assume any additional variance so $\tilde{\sigma}$ was assumed to be zero. The error distribution for the discard observations was assumed in this implementation to be normally distributed where the error value inputs were interpreted as coefficient of variations (Equation S.29).

$$L_{D,f} = \sum_{f=1}^{A_f} 0.5 \left(df_f + 1 \right) \ln \left(\frac{1 + \left(d_{y,f} - \widehat{d_{y,f}} \right)^2}{df_f \sigma^2_{y,f}} \right) + \tilde{\sigma} \ln \left(\sigma_{y,f} \right)$$
(S.29)

The catch at size distribution log-likelihood contribution was specified in Equation S.30, where $n_{y,f}$ was the user specified sample size, $p_{y,f,l}$ ias the observed proportion by length in the sample during year y for fishery f, and $\widehat{p_{y,f,l}}$ was the expected proportion. The error between observed and fitted catch at size observations was assumed to be lognormally distributed.

$$L_{LC,f} = \sum_{y=1}^{N_y} \sum_{l=1}^{L_{max}} n_{y,f} p_{y,f,l} \frac{p_{y,f,l}}{p_{y,f,l}}$$
(S.30)

The observed and fitted catch for each year and fleet that contributes to the log-likelihood was represented by Equation S.31, where $C_{y,f}$ was the catch each year and fleet, and *x* represented a small added constant equal to 10^{-6} . The contribution of the initial equilibrium catch ($C_{t=0,f}$) to the log-likelihood used the same function, by substituting initial equilibrium catch for $C_{y,f}$. The landings error distribution was assumed to be lognormally distributed.

$$L_{C,f} = \sum_{y=1}^{N_y} \frac{(\ln(c_{y,f}) - \ln(\widehat{c_{y,f} + x}))^2}{2\sigma_{y,f}^2}$$
(S.31)

Recruitment deviations contributed to the log-likelihood as per Equation S.32, where the second term (b_y times the natural log of the variance) scaled according to the bias recruitment adjustment parameter, which was fixed at 0.01 for all implementations of Stock Synthesis in this study.

$$L_{R} = \frac{1}{2} \sum_{y=1}^{N_{y}} \frac{R_{y}^{2}}{\sigma_{R}^{2}} + b_{y} \ln(\sigma_{R}^{2})$$
(S.32)

<u>Stock Synthesis Assessment Model Inputs, Standard Errors and</u> <u>Effective Sample Sizes</u>

Red Grouper

Table S.20: Simulated red grouper landings (in metric tons) included in this study's implementation of Stock Synthesis for the simulated handline and longline fishing fleets, and the removals from applying the recreational fishing mortality rate.

Simulation Year	Handline	Longline	Recreational
1	458	488	520
2	509	418	582
3	557	470	659
4	582	386	736
5	597	454	817
6	585	391	895
7	678	499	1,004
8	712	446	1,099
9	756	542	1,203
10	809	476	1,288
11	844	592	1,359
12	845	563	1,435
13	897	573	1,488
14	880	523	1,544
15	913	621	1,593
16	952	510	1,630
17	944	622	1,666
18	956	487	1,696
19	966	681	1,735
20	959	545	1,748

Cimulation Voor	Typical Standardization					Extended Sta	ndardization			Perfect Inf	ormation	
Simulation rear	Handline Index	Handline Index CV	Longline Index	Longline Index CV	Handline Index	Handline Index CV	Longline Index	Longline Index CV	Handline Index	Handline Index CV	Longline Index	Longline Index CV
1	0.609	0.01	1.169	0.01	0.621	0.01	1.236	0.01	0.437	0.01	0.437	0.01
2	0.687	0.01	1.065	0.01	0.662	0.01	1.087	0.01	0.499	0.01	0.499	0.01
3	0.728	0.01	0.871	0.01	0.734	0.01	0.920	0.01	0.561	0.01	0.561	0.01
4	0.762	0.01	0.824	0.01	0.753	0.01	0.862	0.01	0.620	0.01	0.620	0.01
5	0.765	0.01	0.733	0.01	0.782	0.01	0.771	0.01	0.656	0.01	0.656	0.01
6	0.780	0.01	0.813	0.01	0.782	0.01	0.781	0.01	0.712	0.01	0.712	0.01
7	0.835	0.01	0.808	0.01	0.847	0.01	0.795	0.01	0.794	0.01	0.794	0.01
8	0.948	0.01	0.862	0.01	0.933	0.01	0.850	0.01	0.876	0.01	0.876	0.01
9	0.958	0.01	0.981	0.01	0.986	0.01	0.946	0.01	0.950	0.01	0.950	0.01
10	1.060	0.01	0.946	0.01	1.042	0.01	0.966	0.01	1.021	0.01	1.021	0.01
11	1.060	0.01	1.005	0.01	1.082	0.01	1.025	0.01	1.084	0.01	1.084	0.01
12	1.119	0.01	1.085	0.01	1.100	0.01	1.034	0.01	1.142	0.01	1.142	0.01
13	1.123	0.01	1.027	0.01	1.149	0.01	1.039	0.01	1.193	0.01	1.193	0.01
14	1.175	0.01	1.013	0.01	1.153	0.01	1.040	0.01	1.244	0.01	1.244	0.01
15	1.170	0.01	1.076	0.01	1.179	0.01	1.048	0.01	1.285	0.01	1.285	0.01
16	1.259	0.01	1.109	0.01	1.235	0.01	1.075	0.01	1.325	0.01	1.325	0.01
17	1.211	0.01	1.224	0.01	1.236	0.01	1.162	0.01	1.358	0.01	1.358	0.01
18	1.261	0.01	1.082	0.01	1.229	0.01	1.132	0.01	1.390	0.01	1.390	0.01
19	1.191	0.01	1.177	0.01	1.220	0.01	1.128	0.01	1.415	0.01	1.415	0.01
20	1.300	0.01	1.130	0.01	1.276	0.01	1.102	0.01	1.438	0.01	1.438	0.01

Table S.21: Simulated red grouper indices of biomass and assumed CV values for the handline and longline fleets.

Simulation Year	Handline	Handline CV	Longline	Longline CV
1	26	0.1	22	0.1
2	26	0.1	17	0.1
3	25	0.1	17	0.1
4	25	0.1	14	0.1
5	30	0.1	17	0.1
6	31	0.1	18	0.1
7	34	0.1	26	0.1
8	32	0.1	18	0.1
9	33	0.1	20	0.1
10	35	0.1	19	0.1
11	34	0.1	26	0.1
12	32	0.1	21	0.1
13	34	0.1	23	0.1
14	33	0.1	22	0.1
15	33	0.1	23	0.1
16	34	0.1	20	0.1
17	34	0.1	28	0.1
18	33	0.1	18	0.1
19	35	0.1	27	0.1
20	32	0.1	25	0.1

Table S.22: Simulated red grouper discards in metric tons for the handline and longline fleets and the assumed coefficients of variation.

Simulation Voor	Catch At Length From Simulated Fishery							
Simulation rear	Handline	Longline	Recreational					
1	290	147	2,291					
2	276	124	2,496					
3	309	139	2,844					
4	307	115	3,191					
5	320	129	3,502					
6	305	115	3,817					
7	349	147	4,199					
8	354	137	4,495					
9	370	160	4,782					
10	372	143	4,996					
11	389	170	5,154					
12	375	165	5,319					
13	393	164	5,432					
14	384	154	5,526					
15	394	170	5,628					
16	392	147	5,688					
17	398	170	5,753					
18	388	143	5,794					
19	404	184	5,884					
20	386	154	5,890					

Table S.23: Red grouper effective sample sizes used for catch at length observations. Effective sample sizes were determined by dividing the actual sample sizes by 1,000.

Gag Grouper

Table S.24: Simulated gag grouper landings (in metric tons) included in this study's implementation of Stock Synthesis for the simulated handline and longline fishing fleets, and the removals from applying the recreational fishing mortality rate.

Simulation Year	Handline	Longline	Recreational
1	812	350	2,707
2	543	158	2,030
3	406	111	1,660
4	292	55	1,593
5	278	58	1,677
6	261	36	1,784
7	263	41	1,840
8	248	26	1,857
9	243	30	1,856
10	230	24	1,852
11	232	28	1,837
12	216	23	1,838
13	222	24	1,825
14	210	22	1,821
15	216	24	1,819
16	214	20	1,817
17	211	23	1,812
18	207	20	1,809
19	215	24	1,809
20	210	21	1,806

Cimulation Voor		Typical Stan	dardization			Extended Sta	ndardization		Perfect Information			
Simulation Year	Handline Index	Handline Index CV	Longline Index	Longline Index CV	Handline Index	Handline Index CV	Longline Index	Longline Index CV	Handline Index	Handline Index CV	Longline Index	Longline Index CV
1	2.571	. 0.010	4.567	0.010	2.586	0.010	6.213	0.010	1.569	0.010	1.569	0.010
2	1.773	0.010	2.738	0.010	1.757	0.010	2.847	0.010	1.273	0.010	1.273	0.010
3	1.277	0.010	1.634	0.010	1.265	0.010	1.652	0.010	1.126	0.010	1.126	0.010
4	0.944	0.010	1.137	0.010	0.929	0.010	0.951	0.010	1.069	0.010	1.069	0.010
5	0.886	0.010	0.838	0.010	0.885	0.010	0.722	0.010	1.041	0.010	1.041	0.010
6	0.902	0.010	0.790	0.010	0.898	0.010	0.573	0.010	1.018	0.010	1.018	0.010
7	0.885	0.010	0.757	0.010	0.891	0.010	0.579	0.010	0.992	0.010	0.992	0.010
8	0.898	0.010	0.677	0.010	0.890	0.010	0.505	0.010	0.969	0.010	0.969	0.010
9	0.852	0.010	0.662	0.010	0.857	0.010	0.520	0.010	0.951	0.010	0.951	0.010
10	0.848	0.010	0.612	0.010	0.843	0.010	0.541	0.010	0.936	0.010	0.936	0.010
11	0.838	0.010	0.614	0.010	0.848	0.010	0.494	0.010	0.924	0.010	0.924	0.010
12	0.827	0.010	0.585	0.010	0.826	0.010	0.484	0.010	0.916	0.010	0.916	0.010
13	0.820	0.010	0.525	0.010	0.830	0.010	0.479	0.010	0.909	0.010	0.909	0.010
14	0.819	0.010	0.549	0.010	0.812	0.010	0.496	0.010	0.905	0.010	0.905	0.010
15	0.797	0.010	0.542	0.010	0.807	0.010	0.486	0.010	0.902	0.010	0.902	0.010
16	0.832	0.010	0.514	0.010	0.825	0.010	0.495	0.010	0.901	0.010	0.901	0.010
17	0.804	0.010	0.527	0.010	0.810	0.010	0.464	0.010	0.900	0.010	0.900	0.010
18	0.806	0.010	0.570	0.010	0.804	0.010	0.493	0.010	0.901	0.010	0.901	0.010
19	0.792	0.010	0.569	0.010	0.811	0.010	0.490	0.010	0.899	0.010	0.899	0.010
20	0.829	0.010	0.592	0.010	0.826	0.010	0.515	0.010	0.899	0.010	0.899	0.010

Table S.25: Simulated red grouper indices of biomass and the CV values assumed for the handline and longline fleets.

Simulation Year	Handline	Handline CV	Longline	Longline CV
1	23	0.1	17	0.1
2	16	0.1	7	0.1
3	14	0.1	4	0.1
4	17	0.1	2	0.1
5	19	0.1	3	0.1
6	18	0.1	2	0.1
7	19	0.1	3	0.1
8	18	0.1	1	0.1
9	18	0.1	2	0.1
10	19	0.1	1	0.1
11	19	0.1	2	0.1
12	17	0.1	1	0.1
13	18	0.1	2	0.1
14	17	0.1	2	0.1
15	18	0.1	1	0.1
16	18	0.1	1	0.1
17	17	0.1	2	0.1
18	17	0.1	1	0.1
19	19	0.1	2	0.1
20	18	0.1	2	0.1

Table S.26: Simulated gag grouper discards in metric tons for the handline and longline fleets and the assumed coefficients of variation.

Simulation Voar	Catch At Length Effective Sample Size						
Simulation real	Handline	Longline	Recreational				
1	88	25	5,810				
2	58	11	4,784				
3	45	8	4,907				
4	32	4	5,632				
5	40	4	6,291				
6	43	4	6,662				
7	46	4	6,820				
8	45	3	6,890				
9	45	4	6,920				
10	44	4	6,930				
11	45	4	6,935				
12	43	3	6,943				
13	45	4	6,926				
14	42	3	6,946				
15	44	4	6,956				
16	43	3	6,950				
17	43	3	6,932				
18	42	3	6,937				
19	44	4	6,948				
20	43	3	6,931				

Table S.27: Gag grouper effective sample sizes used for catch at length observations. Effective sample sizes were determined by dividing the actual sample sizes by 1,000.

Red Snapper

Table S.28: Simulated red snapper landings (in metric tons) included in this study's implementation of Stock Synthesis for the simulated handline and longline fishing fleets, and the removals from applying the recreational fishing mortality rate.

Simulation Year	Handline	Longline	Recreational
1	100	6	718
2	87	6	582
3	107	4	591
4	115	6	716
5	132	4	1,016
6	121	6	1,129
7	127	4	1,095
8	121	5	1,059
9	131	4	1,048
10	117	6	1,074
11	128	4	1,073
12	116	5	1,076
13	121	4	1,077
14	118	6	1,068
15	126	4	1,063
16	110	5	1,072
17	122	3	1,061
18	110	5	1,065
19	126	4	1,061
20	106	5	1,060

Cimulation Voor		Typical Stand	dardization			Extended Sta	ndardization		Perfect Information			
Simulation Year	Handline Index	Handline Index CV	Longline Index	Longline Index CV	Handline Index	Handline Index CV	Longline Index	Longline Index CV	Handline Index	Handline Index CV	Longline Index	Longline Index CV
1	0.621	0.010	1.615	0.010	0.635	0.010	1.542	0.010	0.883	0.010	0.883	0.010
2	0.623	0.010	0.974	0.010	0.605	0.010	0.843	0.010	0.801	0.010	0.801	0.010
3	0.802	0.010	0.769	0.010	0.808	0.010	0.700	0.010	0.860	0.010	0.860	0.010
4	1.037	0.010	0.847	0.010	1.074	0.010	0.829	0.010	1.005	0.010	1.005	0.010
5	1.193	0.010	0.948	0.010	1.162	0.010	0.991	0.010	1.083	0.010	1.083	0.010
6	1.181	0.010	1.210	0.010	1.223	0.010	1.378	0.010	1.073	0.010	1.073	0.010
7	1.079	0.010	1.016	0.010	1.064	0.010	1.072	0.010	1.046	0.010	1.046	0.010
8	1.100	0.010	1.085	0.010	1.103	0.010	1.184	0.010	1.032	0.010	1.032	0.010
9	1.080	0.010	1.118	0.010	1.088	0.010	1.110	0.010	1.027	0.010	1.027	0.010
10	1.066	0.010	1.017	0.010	1.039	0.010	1.130	0.010	1.021	0.010	1.021	0.010
11	1.069	0.010	0.894	0.010	1.051	0.010	0.829	0.010	1.004	0.010	1.004	0.010
12	0.987	0.010	0.959	0.010	1.012	0.010	0.874	0.010	1.012	0.010	1.012	0.010
13	1.026	0.010	0.951	0.010	1.006	0.010	0.832	0.010	1.011	0.010	1.011	0.010
14	1.056	0.010	0.935	0.010	1.048	0.010	0.999	0.010	1.019	0.010	1.019	0.010
15	1.031	0.010	1.025	0.010	1.025	0.010	1.030	0.010	1.014	0.010	1.014	0.010
16	0.999	0.010	0.959	0.010	0.978	0.010	1.038	0.010	1.016	0.010	1.016	0.010
17	0.986	0.010	0.944	0.010	1.026	0.010	0.879	0.010	1.023	0.010	1.023	0.010
18	1.014	0.010	0.881	0.010	1.017	0.010	0.982	0.010	1.028	0.010	1.028	0.010
19	1.028	0.010	0.919	0.010	1.020	0.010	0.925	0.010	1.021	0.010	1.021	0.010
20	1.023	0.010	0.934	0.010	1.015	0.010	0.832	0.010	1.022	0.010	1.022	0.010

Table S.29: Simulated red snapper indices of biomass and the CV values assumed for the handline and longline fleets.

Simulation Year	Handline	Handline CV	Longline	Longline CV
1	133	0.1		
2	121	0.1		
3	150	0.1		
4	169	0.1		
5	230	0.1		
6	175	0.1		
7	199	0.1		
8	170	0.1		
9	202	0.1		
10	184	0.1		
11	196	0.1		
12	172	0.1		
13	183	0.1		
14	162	0.1		
15	192	0.1		
16	165	0.1		
17	171	0.1		
18	170	0.1		
19	190	0.1		
20	157	0.1		

Table S.30: Simulated red snapper discards in metric tons for the handline and longline fleets and the assumed coefficients of variation.

Simulation Voor	Catch At Length Effective Sample Size							
Simulation rear	Handline	Longline	Recreational					
1	58	2	2,712					
2	60	2	3,245					
3	92	2	3,760					
4	99	3	4,827					
5	107	2	6,252					
6	91	3	6,476					
7	98	2	6,217					
8	95	3	6,074					
9	101	2	6,092					
10	92	3	6,237					
11	99	2	6,216					
12	92	3	6,238					
13	95	2	6,247					
14	95	3	6,201					
15	97	2	6,187					
16	87	3	6,229					
17	97	2	6,172					
18	87	3	6,197					
19	100	2	6,186					
20	85	3	6,185					

Table S.31: Red snapper effective sample sizes used for catch at length observations. Effective sample sizes were determined by dividing the actual sample sizes by 1,000.

Mutton Snapper

Table S.32: Simulated mutton snapper landings (in metric tons) included in this study's implementation of Stock Synthesis for the simulated handline and longline fishing fleets, and the removals from applying the recreational fishing mortality rate.

Simulation Year	Handline	Longline	Recreational
1	3	14	179
2	3	10	200
3	4	16	227
4	4	11	254
5	4	21	276
6	4	22	295
7	5	24	310
8	5	26	326
9	5	20	340
10	6	20	351
11	5	22	359
12	6	33	369
13	5	23	376
14	7	25	382
15	7	27	389
16	7	22	390
17	5	29	394
18	7	28	401
19	6	30	402
20	7	32	403

Simulation Voor		Typical Stand	dardization			Extended Standardization				Perfect In	formation	
Simulation rear	Handline Index	Handline Index CV	Longline Index	Longline Index CV	Handline Index	Handline Index CV	Longline Index	Longline Index CV	Handline Index	Handline Index CV	Longline Index	Longline Index CV
1	0.532	0.010	0.496	0.010	0.506	0.010	0.702	0.010	0.510	0.010	0.510	0.010
2	0.462	0.010	0.805	0.010	0.451	0.010	0.745	0.010	0.563	0.010	0.563	0.010
3	0.624	0.010	0.633	0.010	0.615	0.010	0.616	0.010	0.620	0.010	0.620	0.010
4	0.686	0.010	0.698	0.010	0.676	0.010	0.691	0.010	0.679	0.010	0.679	0.010
5	0.773	0.010	0.726	0.010	0.760	0.010	0.757	0.010	0.737	0.010	0.737	0.010
6	0.844	0.010	0.823	0.010	0.839	0.010	0.822	0.010	0.796	0.010	0.796	0.010
7	1.033	0.010	0.745	0.010	0.997	0.010	0.833	0.010	0.853	0.010	0.853	0.010
8	0.882	0.010	0.994	0.010	0.868	0.010	1.018	0.010	0.910	0.010	0.910	0.010
9	1.040	0.010	0.938	0.010	1.071	0.010	0.967	0.010	0.963	0.010	0.963	0.010
10	1.264	0.010	0.973	0.010	1.264	0.010	1.014	0.010	1.016	0.010	1.016	0.010
11	1.192	0.010	1.099	0.010	1.210	0.010	1.129	0.010	1.064	0.010	1.064	0.010
12	1.085	0.010	1.277	0.010	1.105	0.010	1.205	0.010	1.110	0.010	1.110	0.010
13	1.028	0.010	1.095	0.010	1.036	0.010	1.122	0.010	1.153	0.010	1.153	0.010
14	1.134	0.010	1.175	0.010	1.130	0.010	1.177	0.010	1.192	0.010	1.192	0.010
15	1.285	0.010	1.296	0.010	1.288	0.010	1.272	0.010	1.228	0.010	1.228	0.010
16	1.287	0.010	1.243	0.010	1.308	0.010	1.117	0.010	1.264	0.010	1.264	0.010
17	1.153	0.010	1.332	0.010	1.162	0.010	1.344	0.010	1.295	0.010	1.295	0.010
18	1.263	0.010	1.285	0.010	1.254	0.010	1.166	0.010	1.324	0.010	1.324	0.010
19	1.169	0.010	1.161	0.010	1.176	0.010	1.171	0.010	1.349	0.010	1.349	0.010
20	1.265	0.010	1.205	0.010	1.285	0.010	1.133	0.010	1.373	0.010	1.373	0.010

Table S.33: Simulated mutton snapper indices of biomass and the CV values assumed for the handline and longline fleets.

Simulation Year	Handline	Handline CV	Longline	Longline CV
1	2	0.1		
2	1	0.1		
3	2	0.1		
4	2	0.1		
5	2	0.1		
6	2	0.1		
7	3	0.1		
8	3	0.1		
9	3	0.1		
10	3	0.1		
11	3	0.1		
12	3	0.1		
13	3	0.1		
14	3	0.1		
15	4	0.1		
16	4	0.1		
17	3	0.1		
18	4	0.1		
19	3	0.1		
20	4	0.1		

Table S.34: Simulated mutton snapper discards in metric tons for the handline and longline fleets and the assumed coefficients of variation.

Simulation Voor	Catch At Length Effective Sample Size						
Simulation rear	Handline	Longline	Recreational				
1	0.512	1.552	2,712				
2	0.530	1.159	3,245				
3	0.704	1.856	3,760				
4	0.768	1.378	4,827				
5	0.786	2.638	6,252				
6	0.801	2.677	6,476				
7	0.822	2.829	6,217				
8	0.926	3.104	6,074				
9	0.853	2.418	6,092				
10	0.997	2.317	6,237				
11	0.889	2.497	6,216				
12	0.911	3.728	6,238				
13	0.799	2.611	6,247				
14	1.021	2.965	6,201				
15	1.105	2.913	6,187				
16	1.129	2.341	6,229				
17	0.744	3.159	6,172				
18	1.050	3.024	6,197				
19	0.889	3.278	6,186				
20	1.092	3.411	6,185				

Table S.35: Mutton snapper effective sample sizes used for catch at length observations. Effective sample sizes were determined by dividing the actual sample sizes by 1,000.

Fishing Site Choice Locations

Figure S.1: Numbered polygons formed by the intersection of 20-meter depth contours with equal lines of integer latitude and longitude values, which were used to represent the domain of spatial locations that could be selected when modeling fishing site choice. The numbers in this figure correspond to the variables presented in tables S.13, S.14, and S.15.

Figure S.2: Comparison of simulated to actual landings in pounds of gutted weight for red grouper (RG) and gag grouper (GG) caught by the handline (HL) fleet.

Figure S.3: Comparison of simulated to actual landings in pounds of gutted weight for red snapper (RS) and mutton snapper (MS) caught by the handline (HL) fleet.

Figure S.4: Comparison of simulated to actual landings in pounds of gutted weight for red grouper (RG) and gag grouper (GG) caught by the longline (LL) fleet.

Figure S.5: Comparison of simulated to actual landings in pounds of gutted weight for red snapper (RS) and mutton snapper (MS) caught by the longline (LL) fleet.

Year

Year

10 13 16 19

Simulation HL

Reality HL

Figure S.6: Comparison of fishing trip duration between the simulated and actual handline (HL) and longline (LL) fleets. Histograms with the actual distributions of fishing trip length above were altered to group bars at the right most tail of each distribution in order to protect confidentiality.

Figure S.7: Comparison of average trips per boat each year, between the simulated and actual handline (HL) and longline (LL) fleets. Histograms with the actual distributions of average trips per boat per year above were altered to group bars at the right most tail of each distribution in order to protect confidentiality.

Figure S.8: Comparison of total number of trips per year, between the simulated and actual handline (HL) and longline (LL) fleets.

Figure S.9: Validation of spatial catch patterns for red grouper. The left panel presents the actual spatial catch of red grouper calculated by combining vessel monitoring system data and logbook observations, while the right panel presents the simulated spatial catch of red grouper in the terminal year of the simulation. Catch units in both plots are in total pounds (TP) of whole weight (ww). Values on the right most simulation panel are smaller because the spatial resolution is much finer compared with the figure on the right.

Figure S.10: Validation of spatial catch patterns for gag grouper. The left panel presents the actual spatial catch of gag grouper calculated by combining vessel monitoring system data and logbook observations, while the right panel presents the simulated spatial catch of gag grouper in the terminal year of the simulation. Catch units in both plots are in total pounds (TP) of whole weight (ww). Values on the right most simulation panel are smaller because the spatial resolution is much finer compared with the figure on the right.

Figure S.11: Starting and ending year simulated population biomass (in pounds) for red grouper.

Figure S.12: Starting and ending year simulated population biomass (in pounds) for gag grouper.

Figure S.13: Starting and ending year simulated population biomass (in pounds) for red snapper.

Figure S.14: Starting and ending year simulated population biomass (in pounds) for mutton snapper.