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How fisher behavior can bias stock assessment: insights from
an agent-based modeling approach
Steven Saul, Elizabeth N. Brooks, and David Die

Abstract: During stock assessment, fishery-dependent observations are often used to develop indices of abundance or biomass
from catch per unit of effort (CPUE) and contribute catch at size or age information. However, fisher behavior, rather than
scientific sampling protocols, determines the spatial and temporal locations of fishery-dependent observations. As a result,
trends from fishery-dependent data may be a function of fishing activity rather than fish population changes. This study
evaluates whether data collected from commercial fishing fleets in the Gulf of Mexico are representative of trends in fish
population size. A coupled bioeconomic agent-based model was developed to generate simulated fishery data, which were used
to populate an age-structured stock assessment. Comparison of stock assessment results with simulated fish population dynam-
ics showed that management advice from assessment models based on fishery-dependent data could be biased. Assessment of
fish with small home ranges harvested by fishing fleets that frequent the same fishing grounds could cause overestimation of
fishing mortality. Not accounting for the spatial structure of the fishers or fish can cause biased estimates of population status.

Résumé : Dans le cadre d’évaluations de stocks, des observations dépendantes de la pêche sont souvent utilisées pour définir des
indices d’abondance ou de biomasse à partir des captures par unité d’effort (CPUE) et fournissent de l’information sur les prises
selon la taille ou l’âge. Ce sont toutefois les comportements des pêcheurs, plutôt que des protocoles d’échantillonnage scienti-
fiques, qui déterminent l’emplacement dans l’espace et le temps d’observations dépendantes de la pêche. Les tendances révélées
par les données dépendantes de la pêche peuvent donc être une fonction de l’activité de pêche plutôt que de changements dans
les populations de poissons. L’étude tente d’établir si les données tirées de flottes de pêche commerciale dans le golfe du Mexique
sont représentatives des tendances de la taille des populations de poissons. Un modèle qui jumelle des approches bioéconomique
et multiagents a été mis au point pour générer des données de pêche simulées qui ont été utilisées comme intrants pour une
évaluation des stocks structurée par âge. Une comparaison des résultats de l’évaluation des stocks à la dynamique simulée des
populations de poissons montre que les avis de gestion tirés de modèles d’évaluation reposant sur des données dépendantes de
la pêche pourraient être biaisés. L’évaluation de poissons caractérisés par de petits domaines vitaux pêchés par des flottes de
pêche qui fréquentent les mêmes lieux de pêche pourrait entraîner une surestimation de la mortalité par pêche. La non-prise en
compte de la structure spatiale des pêcheurs ou des poissons peut se traduire par des estimations biaisées de l’état des
populations. [Traduit par la Rédaction]

Introduction
The importance of understanding human behavior in the con-

text of fisheries management has been well acknowledged
(Branch et al. 2006; Fulton et al. 2011). Fisher behavior has often
been discussed with respect to avoiding unforeseen responses by
fishing fleets and (or) the ecosystem to different fisheries policies
(Girardin et al. 2017; Salas and Gaertner 2004; Wilen et al. 2002).
Less attention, however, has been given to the influence that
fisher behavior might have on stock assessments, which are often
the tool that informs catch limits or other aspects of fisheries
management (Fulton et al. 2011). Fisher behavior can affect stock
assessments because it determines the spatial and temporal loca-
tions of fishery-dependent observations, often a primary input to
stock assessment (Sethi et al. 2010; Nguyen and Leung 2013).

Many studies have evaluated the impact of specific fishing behav-
ior changes in response to changes in policy (Dharmawan et al. 2017;
Said et al. 2018; Seung 2017), the environment (Tommasi et al. 2017),
technology (Herrmann et al. 2017), or market conditions (Guillotreau
et al. 2017). Such behavioral changes are thought to aid in maximiz-

ing fisher revenue by allocating their limited fishing effort in what
fishers perceive to be an economically efficient manner (Hilborn
1985; Lane 1988; Salas et al. 2004). However, even in the absence of
specific drivers of fishing effort, such as periods of market and regu-
latory stability, the daily operational decisions of fishers are still
focused on allocating their fishing effort to fulfill orders and make a
profit. As such, fisher behavior, rather than scientific sampling pro-
tocols, determines the spatial and temporal locations of fishery-
dependent observations.

Fishery-dependent observations are not equivalent to those col-
lected from statistically designed fishery-independent sampling
(Mesnil et al. 2009; Reimer et al. 2017). However, both fishery-
dependent and fishery-independent observations are often used
to fit stock assessment models (Maunder and Piner 2015). In stock
assessment models, fishery-dependent observations are often
used to develop indices of abundance or biomass that are assumed
to be proportional to fish abundance or biomass trends over time
(Maunder et al. 2006). Fishery-dependent observations also pro-
vide catch at size (or age) information, which are required for
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many types of assessment models. As a result of targeting and
profit-oriented decisions, trends in abundance and population
size structure derived from these data may be a function of fishing
activity rather than fish population changes. To minimize the
influence of exogenous processes on fishery-dependent data, sta-
tistical approaches are used to remove effects of fishing on catch
per unit of effort (CPUE) so that the remaining trend reflects ac-
tual changes in fish abundance (Bishop et al. 2000, 2004; Maunder
and Punt 2004).

However, even when variables that may explain some drivers of
fisher behavior are available in the data, the interactions between
fisher behavior and fish populations are complex, nonlinear, and
cannot be simply standardized away (Ye and Dennis 2009; Monk
et al. 2018). For example, some approaches have been proposed to
address time–area interactions that can bias CPUE indices (Walters
2003; Campbell et al. 2014; Dolder et al. 2018). Unfortunately, data are
often collected at spatial scales that are too large to capture underly-
ing spatial–temporal trends in abundance, and therefore space–time
interactions are not often considered when standardizing. Stock as-
sessments based on a CPUE index that is inappropriately standard-
ized are likely to provide biased results that may lead to inaccurate
management advice and threaten fishery sustainability, individual
livelihood, and fishery-dependent communities and cultures (Bishop
2006; Benson and Stephenson 2018).

This study investigated how day-to-day decisions about fishing
operations could affect fishery-dependent data and the results of
stock assessments that use fishery-dependent information. The
purpose of the study was to determine whether, and to what
degree, fisher behavior and the spatial interplay between fish and
fishers contributes to stock assessment model uncertainty and to
what degree such dynamics affect stock status determination. A
bioeconomic, spatially explicit, agent-based simulation model of
the reef fish fishery on the West Florida Shelf (Gulf of Mexico
located off the west coast of Florida) was developed as an operat-
ing model to address this question. We hypothesize that the use of
fishery-dependent data in stock assessments for the species and
fisheries modeled would cause more pessimistic stock status met-
rics compared with the status of the simulated populations. Our
hypothesis was premised on the fact that the fish species simu-
lated have a strong bottom habitat association, are not highly
migratory, and that the fishing fleets operate in repeated loca-
tions and predictable ways.

To test this hypothesis, the simulation model replicated daily
behaviors of the fish and fishers under conditions of constant
catchability for 20 years. Fishery-dependent data generated by the
simulated fleets in the model were used to conduct stock assess-
ments on each of the four species in the simulation. Indices of
biomass were calculated in several different ways, and an assess-
ment model was fit to each index standardization scenario. In
addition, the use of catch at length data from the simulated fish-
ery was compared with using selectivity-filtered data on the
known size structure of the simulated population to see whether
catch at length data contained any bias. Stock status determina-
tion was compared across scenarios and with the actual stock
status in the simulation model.

Methods

Simulation model architecture
The reef fish fishery on the West Florida Shelf targets a complex

of bottom-dwelling species including groupers (Epinephelus spp.
and Mycteroperca spp.), amberjacks (Seriola spp.), triggerfish
(Balistes spp.), porgies (Sparidae spp.), tilefish (Malicanthidae spp.),
and snapper (Lutjanus spp.) species (Darcy and Gutherz 1984). The
West Florida Shelf habitat is characterized by areas of calcium
carbonate hard bottom and some live coral interspersed among

areas of soft substrate, across a wide continental shelf (�100 nautical
miles (1 n.mi. = 1.852 km) in some locations from the shore to shelf
edge; Phillips et al. 1990; Ward and Tunnell 2017). This fishery was
selected for study because assessments of Gulf of Mexico reef fish are
heavily reliant on catch and effort information from the commercial
fishing industry. Four economically important reef fish species were
modeled in the simulation: red grouper (Epinephelus morio), gag grou-
per (Mycteroperca microlepis), mutton snapper (Lutjanus analis), and red
snapper (Lutjanus campechanus). The two primary commercial fishing
fleets were explicitly represented in the model as individual agents:
the handline fleet (also called the vertical line or bandit fleet), which
consists of vessels using lines with baited hooks on a reel; and the
bottom longline fleet, which consists of vessels that lay a longline
across bottom habitat with baited hooks (Scott-Denton and Williams
2013). In addition, remaining fishing mortality from recreational
vessels, together with minor commercial gear types (i.e., fish traps
and spear fishing), was also modeled as an instantaneous mortal-
ity rate at age.

An agent-based modeling approach was applied to develop the
simulation (Farmer and Foley 2009; An 2012; Bonabeau 2002).
There are a growing number of examples from fisheries science in
which agent-based modeling was the approach of choice (Bastardie
et al. 2014; Little et al. 2009; Perez et al. 2009). The four fish species
and the two primary commercial fishing fleets were simulated as
agents. Each individual fishing vessel was represented as its own
agent, while each fish represented 25 individuals at birth, all with
the same properties, to accommodate computer memory and pro-
cessing limitations (Parry and Evans 2008). The numbers of individ-
uals each fish super-agent represented decreased exponentially over
time as fish died from natural and fishing mortality. Fish abun-
dances were modeled to match estimates in recent stock assess-
ments, and the number of simulated fishing vessels matched those
currently registered. Vessel numbers (290 handline and 74 longline
vessels) reflected those with reef fish permits, actively participating
in the fishery at the time. Port locations were represented in the
model, and simulated vessels were assigned probabilistically to each
port along the west coast of Florida, based on the characteristics and
fishing power of vessels at that port, as reported by the logbook data.

Biological dynamics
The spatial distribution of fish in the simulation was generated

by combining three sets of estimates: computed stock size from
stock assessment models, fishery-dependent CPUE, and fishery-
independent estimates of spatial autocorrelation in relative abun-
dance derived from video survey data (Saul et al. 2013). Each of the
four species represented in the simulation are routinely assessed,
and the most recent stock assessment models at the time the
simulation model was developed were used to provide life history,
age distribution, and population abundance inputs (SEDAR 2005,
2006a, 2006b, 2008). Stock assessment estimates were made for
the entire northern Gulf of Mexico occurring within the United
States Exclusive Economic Zone. The simulation model, however,
only represented the eastern half of US Gulf of Mexico waters.
Therefore, standardized CPUE indices were estimated spatially to
partition the fraction of species abundance that occurred in the
study area. A second set of standardized spatial CPUE indices were
used to distribute fish occurring on the West Florida Shelf among
15 spatial strata defined by the intersection of 20 m depth con-
tours with 25°N and 85°W (Fig. 1).

CPUE abundance indices for each species and gear type were
estimated using commercial logbook data by applying general-
ized linear models with a delta-lognormal approach (Pennington
1983, 1996; Lo et al. 1992). A binomial model was used to model
whether the species of interest was encountered on a fishing trip,
and a lognormal model was used to model the CPUE using records
with nonzero catches for the species of interest. These two models
were combined (eq. 1), where w represents the probability of a
zero observations, and f(y) represents the mean of the lognormal
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distribution fit to positive observations, where y is the observed
catch (Maunder and Punt 2004):

(1) Pr(Y � y) � �w, y � 0
(1 � w)[f(y)], otherwise

Predictive variables considered in the binomial and lognormal
components were area, depth, month, year, and all first-level in-
teractions. Results from these two models were combined to gen-
erate the index (Hinton and Maunder 2004).

Fish species within each of these 15 large spatial strata were
distributed across grid cells within each stratum by computing
the spatial autocorrelation of individuals. Each grid cell in the
simulation represented one-minute latitude by one-minute longi-
tude, which were �1.15 km2. Fishery-independent video survey
data observations were used to calculate an empirical variogram,
to which a spherical relationship was fit (eq. 2), where �(u) (eq. 3) is
a monotonic decreasing function:

(2) VY(u) � �2 � �2[1 � �(u)]

(3) �(u) � �1 �
3
2�u

�� �
1
2�u

��3
for 0 ≤ u ≤ �

0 for u 	 �

The spherical variogram has three parameters: the nugget (�2), par-
tial sill (�2), and range (�). The variable u in the equations represents
the binned distance between data points. Estimated spherical model
covariance was Cholesky-decomposed and used to simulate a Gauss-
ian random field across the grid in each of the 15 large spatial strata.
For this application, the probability of abundance y in each grid cell
n was a function of a Gaussian stochastic process with Cholesky-
decomposed covariance matrix M:

(4) P(y1, …, yn)dy1…dyn �
1

2
�det(M)

× exp��(y1, …, yn)M
�1�y1

Ê
yn

�
2

	dy1, …, dyn

Fig. 1. Map of the West Florida Shelf showing the 15 areas for which spatial catch per unit effort (CPUE) were estimated, as determined by the
intersection of 20 m depth contours and 25°N, 85°W. Map features and land designation are from the R project using the ggplot, ggplot2, and
sf packages (R Core Team 2018). Lines indicating the 15 areas were developed using data from NOAA’s National Centers for Environmental
Information.
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This approach was used to initialize the placement of fish at the
start of the model and guide the placement of new recruits in
adjacent nursery habitat. As a stochastic process, the fine-scale
distribution of fish within each of the 15 large spatial areas was
simulated at the start of each simulation model run (Saul et al.
2013).

Recruited age-0 fish were placed in nursery habitat, where nurs-
ery habitat was assumed as nearshore shallow water between 0
and 20 m. The nursey habitat location where fish were assigned
was adjacent to their predestined adult location, meaning within
the same integer band of latitude or longitude (depending on its
location in the Gulf of Mexico given the Gulf’s curved coastline).
This ensured that fish followed a sensible ontogenetic migration
trajectory. The ontogenetic movement of fish from juvenile to
adult habitat was modeled as a biased random walk (Saul et al.
2012). The onset of maturity cued simulated fish to begin ontoge-
netic migration. Newly recruited age-0 fish agents were assigned a
predestined adult habitat location, based on the Gaussian random
field computation, to which they migrated if they survived.

Only forward directional movement was permitted. Each time
step that a fish migrated, the distance between its current loca-
tion and predestined adult habitat location was calculated, and
the neighboring grid cells at the time were ranked one through
five; the three grid cells behind the fish agent were excluded
(Fig. 2). If distances were the same, equal ranks were applied. An
exponential probability function (pi) was applied to each rank, ri,
where n is the number of distance options (five) and � = 1/n:

(5) pi �
� exp(��ri)


i�1

n
� exp(��ri)

Given the bathymetric pattern of increasing depth from inshore
to offshore across the West Florida Shelf, a directional bias was
incorporated. As fish j moved further offshore, it evaluated the
ratio of the depth of its current location Dj,t at time t to the depth
of their target location D_tar:

(6) p_directj,t � � Dj,t

D_tarj
�C

The constant C is a scalar that determined the steepness of the
probability function and the sign of its slope. If the directional
movement probability value was larger than the probability value
for the highest ranked grid cell, the directional movement prob-
ability was substituted for this value, and remaining grid cell
probabilities were rescaled, so all summed to one (Saul et al. 2012).

Conventional empirical tagging data were used to develop a
gamma distribution of movement speed from the distance trav-
eled and time at large between the time of tagging and time of
recapture (eq. 7). Migration speed of an individual fish j at the time
of recruitment R was a continuous random variable, Sj,R, selected
from this gamma distribution and represented the number of
cells a fish can move in a daily time step in the simulation. To
apply the continuous random variable Sj,R to discretized space and
time in the simulation, movement speed (in units of grid cells per
simulation day) could only advance a fish to the next grid cell
when greater than one. Therefore, an intermediary variable, Sj,t,
was used for each time step t and fish j to capture the remainder of
unused movement speed from the previous time period (Sj,t–1).
Daily speed selected for that individual fish (Sj,R) was added to the
unused movement speed each day. When the value of the inter-
mediate movement speed (Sj,t) was greater than one, movement
length (Lj,t), the discrete number of grid cells a fish moved each
day, was calculated as the mathematical floor of the intermediate
movement speed, and the fish would move this number of grid
cells (Saul et al. 2012).

(7)

Lj,t � <Sj,t=
�Sj,t � Sj,t � Lj,t

Sj,t � �Sj,t�1 � Sj,R

Sj,t ≥ 1

Lj,t � 0
Sj,t � Sj,t�1 � Sj,R

Sj,t  1

Parameters describing fish life history (animal growth, natural
mortality, recruitment, maturity, fecundity, and meristic conver-
sions), gear selectivity, and current numbers at age were used
from the most up-to-date stock assessments for each species at the
time of simulation model development. The numbers of fish in
each age group at the start of the simulation was determined from
the number at age in the terminal year of the stock assessments
(refer to online Supplementary material, Tables S.5 though S.81).

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2019-0025.

Fig. 2. Schematic illustrating how grid cells adjacent to the grid cell a migrating fish is located in are ranked given their distance to the
target location, where the fish will terminate its migration. Grayed grid cells illustrate the inability of fish to move in the direction from
whence they came.
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Sequential hermaphroditism was modeled for red and gag grou-
per based on the last assessment for these species and was imple-
mented in the assessment component of the current study using
the logistic relationship within Stock Synthesis (eq. 9), where
Pfemale is the proportion female at age a, the minimum and max-
imum ages modeled are amin and amax, respectively, � is the inflec-
tion point, � represents the standard deviation, � represents the
maximum value, and �0,1(x) is the cumulative normal distribution
value at x (Methot and Wetzel 2013):

(8) Pfemale �
�

�0,1�amax � �

�
� � �0,1�amin � �

�
�

× ��0,1�a � �
� � � �0,1�amin � �

�
��

Life history parameters for each functional form and each species
simulated can be found in the online Supplementary material
(Tables S.1 through S.81). Fish grew in size according to a von
Bertalanffy function (eq. 9), where Lt is the length at age t, L∞ is the
asymptotic length, k is the growth rate, and t0 is the y intercept of
the curve:

(9) Lt � L∞{1 � exp[�k(t � t0)]}

Maturity was modeled using a length-based logistic function
(eq. 10), where ML is the maturity at length L, M∞ is the asymptotic
maturity, k is the maturity rate, and � is the y intercept of the
curve.

(10) ML �
M∞

1 � exp[�k(L � �)]

Surviving fish graduated to the next age cohort at the start of each
calendar year. Natural mortality values were modeled as age-
dependent (except for red snapper) and used the same values
provided by each stock assessment (Supplementary material,
Tables S.5 though S.81). Spawning stock biomass was measured as
either total weight or grams of gonad weight of mature female
fish (see Tables S.1–S.41), and the stock–recruitment function fol-
lowed a Beverton–Holt relationship (eq. 11), where R is the number
of recruited fish, h is the steepness parameter, R0 is the number of
recruited fish when the population is at virgin conditions, and SS
is the spawning stock biomass. The parameter � represents the
virgin spawning fish per recruit (eq. 12), such that Eage is the prod-
uct of maturity and fecundity at each age, ar is the age of recruit-
ment, MaxAge is the maximum age modeled, and M is natural
maturity at age j:

(11) R �
4hR0SS

R0�(1 � h) � (5h � 1)SS

(12) � � 

age�ar

MaxAge

Eage 
j�ar

age�1

exp(�Mj)

Recruitment occurred at the start of each simulation year. Note
that for some of the species, parameterization of the Beverton–
Holt stock–recruitment function varied from eq. 12; details can be
found in the online Supplementary material, Tables S.1 through S.41.

Fleet dynamics
Fishing mortality from the commercial handline and longline

fleets was a function of the decision-making behaviors of the ves-
sel agents. The remaining fraction of fishing mortality from other

less important commercial gear types (i.e., fish traps and commer-
cial spearfishing), together with recreational fishing mortality,
was modeled as one combined instantaneous rate at age, uni-
formly across the spatial and temporal extent of the simulation
(Supplementary material, Tables S.5 through S.81). Landings from
this remaining fishing mortality were included in the stock assess-
ment models. Tables S.9 and S.10 in the Supplementary material1

provide the mathematical relationships and parameters used to
initialize the characteristics of the boats that make up the simu-
lated handline and longline fishing fleets; these characteristics
are used as part of each vessel’s decision-making process as de-
scribed below.

Behavior of commercial handline and longline vessel agents
was represented by three primary decisions: participation, site
choice, and when to return to port (Little et al. 2008). Locations to
select for the site choice modeling were determined by partition-
ing the region into 45 areas, using the intersection of 20 m depth
contours with bands of equal, integer latitude and longitude
(Fig. 3). Participation and return to port decisions were statisti-
cally modeled daily using binomial logistic models, while site
choice was modeled using multinomial mixed logistic models:

(13) lij � ln� Pij

1 � Pij
� � aj � b1jX1i � b2jX2i � …�bkjXki

The linear predictor of a logit model (l) is the natural logarith-
mic function of the ratio between the probability (P) that on a
given choice occasion (i), a decision is made, and the probability
that on that same choice occasion, it is not (1 – P). Let j represent
each possible choice that can be made on a given choice occasion.
If the model was binomial, then j equaled 2, such as whether to
take a fishing trip on a given day or to return to port on a given day
once out fishing. The linear predictor can be directly calculated
for each decision and choice occasion, where a is the intercept, b
represents predictor parameters, and X are the temporal, spatial,
and vessel-level characteristics, k, of that choice occasion (eq. 13).

The models were fit using maximum likelihood:

(14) LL(b) � 

k�1

N



j�1

J �ykj 

q�0

Q

Xkqbqj�
� nk ln�1 � 


j�1

J�1

exp 

q�0

Q

Xkqbqj�
Unknown values in vector b represent known fixed constant val-
ues for each y, and q represents each independent variable. Param-
eters for the three decision models were incorporated into the
simulation and used together with the state variables of each site,
vessel, day, and choice occasion combination to compute the
probability of making each decision:

(15) Pij �
exp lij

1 � 
j�1

J�1
exp lij

The simulation model used this together with a random number
draw to determine the choice a vessel would make. Once a vessel
agent selected a fishing site, it randomly chose a grid cell within
that fishing site polygon in which to start fishing.

Discrete choice models were fit to panel datasets, which were
developed by combining logbook observations with other data-
sets containing information that could influence fisher decision-
making, such as weather, vessel characteristics, fish and fuel
price, regulations, and quota (Saul and Die 2016). The decision to
start a trip on a given day was determined by seasonal regulatory
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closures for groups of species, fuel price, wind speed, and fre-
quency of trips spent commercial fishing (some vessels partici-
pated in both the recreational and commercial fishery). Once out
fishing, vessels tested daily to see whether they would return to
port. The factors a vessel considered when deciding whether to
return to port were seasonal regulatory closures, fuel price, fish
price, the day of the week (not permitted to land on weekends),
and the ratio of current catch volume relative to total fish hold
capacity. Finally, the site choice decision considered distance
from port, expected revenue, wind speed, habit, and fuel cost.
Parameter values from choice model fits can be found in Ta-
bles S.10 through S.18 in the online Supplementary material1.

Catchability and selectivity
To model the capture of an individual fish by a fishing vessel

agent within a grid cell of the simulation, a catchability parameter
(q) was calculated. Catchability in this context represented an
average probability of catching an individual fish within the spa-
tial extent of a grid. Landings information was converted to esti-
mated numbers of fish caught (using age–length–weight data).
Average catch of fish in numbers of fish per day (C̄number · day�1) was
calculated by dividing the catch in number (Cnumber) by the total
number of days (Days) that the fleet fished in a year:

(16) C̄number · day�1 �
Cnumber

Days

Years 2005 and 2006 were used for these calculations. Let the
number of available fish in the population, Navailable, refer to the
fish in the population that are over the size limit and vulnerable

to be caught by a particular fishing gear (either handline or
longline) based on that gear’s selectivity vector at age. From these,
the average catchability coefficient (q̄) was computed to represent
catchability per day. To translate this catchability into a value that
represents the probability of catching one fish in one grid cell, on
one day, we divided the catchability by the average fraction of the
population available to be caught that resides in one grid cell:

(17) q̄ �
C̄number · day�1

Navailable

Let D̄ represent the average density of available fish within one
grid cell, where g is the total number of grid cells that fish can
occupy:

(18) D̄ �
Navailable

g

Using this density, the average fraction of fish located within each
grid cell (f̄) was calculated as the density divided by the total num-
ber of available fish:

(19) f̄ �
D̄

Navailable

The average probability of catching an individual fish within a
grid cell was calculated by dividing the stock-wide average catch-
ability by the average fraction of the population within a grid cell:

Fig. 3. Map of the West Florida Shelf showing the 45 sites that fishers could select from when modeling site choice. The centroid of each site
is denoted by a black square and represents the intersection of 20 m depth contours with integer lines of latitude and longitude. Black triangles
represent the locations of fishing ports along the coast. Map features and land designation are from the R project using the maps and sf packages
(R Core Team 2018). Port locations (triangles) are from the NOAA fisheries landings program, and fishing sites (squares) are the approximate centroid
of each polygon displayed.
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(20) p̄ �
q̄
f̄

The average probability of catching an individual fish was ap-
plied to each fish within the same grid cell as the vessel. Selectivity
was parameterized in the simulation using the functions and es-
timated parameters determined in the most recent stock assess-
ments. Selectivity was modeled using a variety of functional
forms, depending on the species and fishing gear (Fig. 4). Once a
simulated fish was captured, knife-edge retention was applied
according to the minimum size limit for that species: 20, 13, 24,
and 16 inches (1 inch = 2.5 cm), for red grouper, red snapper, gag
grouper, and mutton snapper, respectfully. It was assumed that
all vessel agents were compliant with the regulations throughout
the simulation. Discarding occurred for fish captured below the
size limit, and the discard mortality rates from the most recent
stock assessments were applied to determine the survival of the
released fish.

Fishing vessels could fish multiple grid cells on a given day. This
was simulated by probabilistically selecting the number of loca-
tions a vessel will fish each simulated day by sampling from the
empirical distribution as computed from observer data. To decide
which grid cell to visit next, the simulated vessel would select a
random direction from its current location. Then, a distance to
travel was determined by sampling from the empirical distribu-
tion of distance between fishing sites in a day from the observer
data; the vessel would then travel to the grid cell that distance
away. When a vessel fished in multiple locations on a given day,
the catchability probability was divided evenly among the differ-
ent locations on that day.

To generate fleet heterogeneity, the catchability probability
value (p̄) was scaled to the calculated relative fishing power of each
individual vessel (Marchal et al. 2002). The agent-based simulation
model was run for a 20-year projection. The simulation model was
run 50 times using different random number seeds. All runs pro-
duced similar population and catch trends, with variability among
them due to the stochastic nature of the simulation model. From
this set of runs, data from one that best approximated the median
population trajectory and median catch values from the set was
used to develop the inputs to the stock assessments. Simulated
fishing vessels generated logbook data at the end of each trip,
analogous to the information that fishers are required to submit
to NOAA Fisheries. It was assumed that fishers honestly reported
their information on their logbook forms and that catch informa-
tion was complete. Length and age measurements were made for
all fish caught by the commercial and recreational sectors, and no
aging or measurement error was assumed.

Simulation model validation
Pattern-oriented modeling was used to validate the agent-based

simulation model. This approach uses “multiple patterns ob-
served in real systems to guide design of model structure” (Grimm
et al. 2005). Different from equation-based deterministic models,
agent-based models do not contain an objective function and con-
sequently cannot be minimized or maximized, and therefore
model fit cannot be determined using statistical approaches such
as Akaike’s information criterion (AIC; Burnham and Anderson
2004). Instead, the best-fit model was considered the one that
produced patterns most closely matched to the analogous pat-
terns observed in the real system (Grimm et al. 2005, 2006). Sim-
ulated and real patterns across time and space of fish and fishing
effort were compared with one another both qualitatively and
quantitatively as reported in Saul et al. (2013) and presented in
Figs. S.9 and S.10 in the Supplementary material1.

CPUE estimation
Data collected from the vessel agents were used to conduct a

stock assessment for each fish species. The simulation model pro-
duced logbook data from the two commercial fleets, landings
from all three fleets, a complete census of each fish caught and its
life history characteristics, discards, time series of abundance
each day, annual maps of spatial abundance, biomass, catch and
fishing effort by fleet, spawning stock biomass and recruits each
year, and the size distribution of each species’ population. Report-
ing was assumed to be accurate. Results from the stock assess-
ment were compared with the actual population data from the
simulation.

CPUE indices of biomass (pounds per hook hour; 1 pound =
0.45 kg) were computed for both the simulated handline and
longline fleets in three different ways for each species. These
three indices are hereinafter referred to as “typical standardiza-
tion”, “extended standardization”, and “perfect information”.
The first two methods, typical and extended standardization, ap-
plied the delta-lognormal approach as described earlier (Lo et al.
1992). The third approach (perfect information) derived an index
that perfectly tracked biomass by normalizing the annual biomass
trend in the simulation to its mean. Each of these three indices were
used to compare the effects of alternative approaches for index de-
velopment on stock assessment model results.

The typical standardization approach used variables that were
available in the actual logbook data and typically used in the South-
east Region to standardize fishery-dependent CPUE for stock assess-
ments. These variables included year, area (as blocks of latitude and
longitude), month or season, and days away at sea (days away for the
binomial model only). The extended standardization approach

Fig. 4. Line charts showing the selectivity at age (in years) used in the simulation model for each species and fleet as part of the fishing process.
Selectivity at age patterns were those fit by the stock assessments used to parameterize the simulation model.
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also tested some additional variables: the number of locations
fished each year by the vessel, travel time to and from port, fish
price, vessel travel speed, vessel length, red snapper allocation
(i.e., 0, 200, or 2000 pounds per vessel), the capacity of the fish
hold, and days away on a trip (only included in the binomial
portion of the model). The inclusion of variables in both the typ-
ical and extended CPUE standardization models were evaluated
using a forward stepwise approach.

Stock assessment of simulated fisheries
At the end of the 20-year simulation, single species, age- and

size-structured stock assessment models were developed for each
of the four species represented in the simulation model using
Stock Synthesis, version 3.24P (Methot and Wetzel 2013). For each
species, four different stock assessment models were configured
to test hypotheses about the inclusion and treatment of fishery-
dependent data. Each assessment model configuration tested a
different biomass index scenario (using the typical, extended, and
perfect information), where the fourth model tested the inclusion
of perfect catch at size information by using data that comes from
the population size structure and is adjusted for selectivity and
retention. All other data inputs and parameter starting conditions
were kept the same to test how fisher behavior could bias CPUE
and affect stock assessment. Each assessment included 20-year
time series of CPUE, landings, discards, and catch at length. Two
fishery-dependent indices of biomass were included, one from the
simulated handline fleet and the other from the simulated bot-
tom longline fleet. Landings from three fleets were included in the
model: the commercial handline, commercial longline, and the
combined recreational and remaining commercial fishing mortality.

Catch at size from the simulated handline and longline com-
mercial fleets was included in three of the four assessment model
scenarios. Every simulated fish caught was used to provide catch
at size information to the assessment model to avoid introducing
sampling bias. Life history parameters, including von Bertalanffy
growth, maturity, fecundity, and natural mortality, were assumed
to be known from empirical studies, and the parameters for these
relationships were fixed in the stock assessment to those used in
the simulation model. One exception to this was that for all spe-
cies, allowing Stock Synthesis to estimate the minimum and (or)
maximum size growth function parameters improved the fit to
the composition data. Selectivity, catchability, retention, Beverton–
Holt stock–recruitment function parameters, and fishing mortality
were estimated by Stock Synthesis. Sequential hermaphroditism
was modeled in Stock Synthesis for the red and gag grouper spe-
cies to capture in the assessment their ability to gender switch in
the simulation model. Maximum likelihood was used to fit the
relative abundance, landings, discards, and size composition data
in stock assessment models.

For each species, a base model configuration was selected
through constructing multiple Stock Synthesis models to explore
different functional forms for selectivity and retention, as well as
different starting values and bounds for the stock–recruitment
function. Base model selection was determined using AIC (Burnham
and Anderson 2004). To test base model stability, we performed
jitter analyses (i.e., running the assessment model from several
sets of starting values). The results of the jittered runs were very
similar to the base model results, except that the parameters
representing initial fishing mortality for each fleet were highly
sensitive to the starting values and bounds provided for all spe-
cies. Since these parameters could not be estimated, we iteratively
manually tuned them until the estimates of catch in the first year
provided a good match to catch from the first year of the simu-
lated time series.

Stock status was calculated using the maximum sustainable
yield (MSY) proxy for this fishery (30% of spawning potential ratio
(SPR)) for each assessment model and from the simulation model
itself. Overfishing was defined as the current level of fishing mor-

tality relative to its SPR 30% reference point, while overfished was
defined as the current level of biomass relative to its SPR 30%
reference point. Estimated stock status for all four CPUE standard-
izations, plus the case with perfect length composition, were com-
pared to evaluate how changes to a trend in CPUE or catch size
composition due to fishing operation decision-making could af-
fect these estimates.

Results
The spatial placement of reef fish in the simulation model was

compared with the distribution of benthic habitat features found
in the Gulf of Mexico (see Saul et al. 2013). Modeled fish life history
and movement were compared with tagging data, while the bio-
logical characteristics of actual commercial catches were com-
pared with catches simulated by the model (see Saul et al. 2012).
Fishing operations in the simulation were validated by comparing
simulated landings, trip duration, average number of trips per
vessel each year, and total number of trips per year with these
actual metrics from logbook data (Supplementary material,
Figs. S.2 to S.81). Spatial patterns of simulated catch were com-
pared with actual spatial catch distributions estimated by combin-
ing vessel monitoring system (VMS) data with logbook data for red
grouper and gag grouper; comparative spatial VMS plots were not
available for red snapper or mutton snapper catches (Supplemen-
tary material, Figs. S.9 and S.101).

When determining a base stock assessment model for each spe-
cies, the functional forms and associated parameters most diffi-
cult to estimate (after fixing the initial F) were those associated
with the stock–recruitment function and selectivity functions.
Table S.191 in the Supplementary material shows the different
combinations of stock assessment model configurations that
were developed and their respective AIC values. Parameters con-
trolling sequential hermaphroditism were estimated in the stock
assessments for red grouper and gag grouper. The parameter of
the stock–recruitment function that represents virgin recruit-
ment was estimable for all four species; for gag grouper and red
snapper, the steepness parameter was able to be estimated and
the form of the stock–recruitment relationship was correctly
identified. For stock assessment model configurations where the
steepness parameter was not able to be estimated, this value was
fixed to the value used in the agent-based operating model. In
addition, for some species, the stock–recruitment function pa-
rameter governing recruitment error and deviations was not able
to be estimated and in these cases was fixed at the value used in
the base run from the most recent stock assessment for that spe-
cies.

For each of the four stock assessment model configurations as
applied to each species, (typical index, extended index, perfect
information index, and perfect information in both the index and
length composition), stock status was computed (Fig. 5). Stock
status from the perfect information index and perfect informa-
tion in both the index and length composition scenarios esti-
mated nearly the same status for gag grouper, although the status
did not match the true status from the simulation. For the other
three species, the perfect information index and perfect informa-
tion in both the index and length composition scenarios esti-
mated stock status values that were comparatively closer to that
of the simulation. Stock status results for red grouper were simi-
lar across all scenarios.

Conclusions about overfishing from the four assessment mod-
els also differed in some cases from the actual stock status of the
simulation itself. For gag grouper, red snapper, and mutton snap-
per, overfishing from the assessment models exceeded the actual
degree of overfishing that occurred in the simulation (Fig. 5). Stan-
dard deviation estimates for benchmarks were generally small
(Table 1), illustrating that differences between benchmark esti-
mates among assessment model configuration scenarios were
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outside of uncertainty bounds. Red grouper was an exception and
calculated higher standard deviations for the biomass bench-
mark, making it difficult to discern whether there were actual
differences in this benchmark for this species between stock as-
sessment scenarios. Most of the variability in stock status from the
different scenarios for gag grouper and mutton snapper occurred
in the biomass ratio estimates.

For gag grouper, red grouper, and red snapper, one or both
CPUE indices showed some evidence of hyperdepletion at the
start of the time series, which could cause higher estimates of
fishing morality (Fig. 6). Although fishing effort for both handline
and longline gears was distributed across most areas of the study
site, fishing vessel agents demonstrated a strong preference for
repeated site selection (Fig. 7). Simulation model scenarios showed
that handline vessels aggregated their fishing effort predominantly
in the central part of the region, with additional areas of higher
fishing effort off the Florida Panhandle, and offshore from more

populated areas (such as the Tampa area, which occurs at �27.5°N,
83°W). Two somewhat concentrated spatial groups of fishing effort
emerged from the longline fleet behavior (Fig. 7). This established
local depletion conditions, and fishery-dependent data reflected the
population trends in these locally depleted areas, rather than the
population trends across the entire region.

Catch at length data were also a function of the repeated site
selection and local depletion conditions, which caused the size
distribution of the catch to be smaller than that of the overall
population, even when the size distribution of the total popula-
tion was adjusted for selectivity and retention. The two species
most affected by local depletion, red grouper and gag grouper,
had their largest portion of log-likelihood error attributed to fit-
ting the catch at length information (Table 2). The CPUE and catch
at length components of the log-likelihood for all four species
indicated that no real improvement in model fit was gained
from using the available population size structure corrected for

Fig. 5. Kobe plots from the assessment models of the four species. Each plot contains stock status as determined from assessment models
that used the typical, extended, and perfect information indices of biomass and the assessment model that also incorporated perfect catch at
length information. Population status from the simulation model itself is also included. The x axis represents the ratio of biomass at the end
of the time series to the biomass level at spawning potential ratio (SPR) 30% (Bcurrent), while the y axis represents the ratio of fishing mortality
at the end of the time series to the fishing mortality level at SPR 30% (Fcurrent). Note that the x axis of the mutton snapper plot and the y axis of
the red snapper plot both start at 1 to accommodate the high biomass and fishing mortality ratio values. Both axes are scaled the same as the
other plots to compare the differences in assessment outcomes.
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Table 1. Depletion (Bcurrent/Bmsy-proxy) and fishing mortality (Fcurrent/Fmsy-proxy) benchmark
estimates from the different stock assessment model configurations.

B F

Species Scenario Ratio SE Ratio SE

Red grouper Typical index 2.33 0.13 0.82 0.03
Extended standardization 2.29 0.13 0.85 0.03
Perfect information 2.32 0.13 0.81 0.03
Simulation 2.44 0.13 0.97 0.02
Perfect length 2.07 0.12 0.97 0.03

Gag grouper Typical index 0.40 0.01 1.83 0.04
Extended standardization 0.41 <0.01 2.11 0.03
Perfect information 0.88 0.04 1.05 0.06
Simulation 0.66 0.04 0.92 0.08
Perfect length 0.89 0.04 1.05 0.06

Red snapper Typical index 0.52 0.05 2.46 0.02
Extended standardization 0.54 0.05 3.00 0.04
Perfect information 0.51 0.01 3.86 0.02
Simulation 0.44 0.02 2.23 0.03
Perfect length 0.53 <0.01 2.84 0.04

Mutton snapper Typical index 4.29 0.09 1.28 0.03
Extended standardization 3.59 0.09 1.27 0.03
Perfect information 4.28 0.11 1.06 0.03
Simulation 4.77 0.11 0.89 0.07
Perfect length 4.63 0.10 1.20 0.03

Fig. 6. Time series plots comparing the typical and extended estimated trends in catch per unit effort for the handline (HL) and longline (LL) gear
types, with the actual trend in biomass, referred to as perfect information. All trends are normalized to their respective means for comparison
purposes.
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selectivity instead of the catch at length from the simulated fish-
ery (Table 2). Neither the assessment model with the perfect in-
formation index nor the assessment model with both the perfect
information index and the population length structure (adjusted
for selectivity) were able to properly recreate the population size
structure of the simulated populations (Fig. 8).

The inclusion of additional factors in the index standardization
was not able to account for a difference between the index and
simulated biomass time series (Fig. 6). CPUE trends from the typ-
ical standardization were nearly identical to trends produced by
the extended standardization. Thus, incorporating additional fac-
tors that would be available in the data from the fishing vessels,
and that could potentially reflect fisher behavior, did not improve
the alignment of the standardized index with the simulation
trends in biomass. The incorporation of additional factors into
CPUE standardization for some fleets and species reduced the
amount of deviance left unexplained (Fig. 9).

The Euclidean distance (a measure of similarity) between the
perfect information index and the typical or extended index re-

vealed that the extended index was not closer to the normalized
biomass trend in comparison with the typical index (Table 3). For
handline gear, the typical and extended indices were similar dis-
tances apart from the biomass trends, while for longline gear, the
extended index was more different from the biomass trends com-
pared with the typical index. When additional, fisher behavior-
related factors were incorporated, more variability was explained
by the lognormal regression for positive catch trips compared
with the binomial model for proportion of zero catch trips. This,
however, did not always translate to a CPUE index that better
correlated with biomass. For example, the two red snapper stan-
dardized indices — typical and extended — for both handline and
longline data agreed well with one another and with the trends in
available biomass in the simulation, despite the “extended” log-
normal index explaining �30% more variance (Fig. 9).

Discussion
This study demonstrated that fisher behavior could alter the

outcome of a stock assessment by influencing fishery-dependent
observations and, as a result, the calculation of indices and infer-
ence of population size or age structure, both of which inform
population trends over time. In this study, changes in catchability
over time were not simulated because regulations, technology,
and fishing power were all held constant throughout the simula-
tion. However, different from typical fisheries models, the daily
behavioral decision-making process that fishers used to operate

Table 3. Euclidean distance between the perfect infor-
mation index and either the typical or extended indices.

Species
Distance
(perfect, typical)

Distance
(perfect, extended)

Handline
Red grouper 0.52 0.52
Gag grouper 1.20 1.21
Red snapper 0.38 0.39
Mutton snapper 0.47 0.46

Longline
Red grouper 1.21 1.30
Gag grouper 3.61 5.21
Red snapper 0.85 0.89
Mutton snapper 0.43 0.49

Note: Smaller values indicate closer agreement between indices.

Fig. 7. Maps illustrating the average spatial distribution of fishing effort for the handline and longline fleets during the simulation. Map features
and land designation are from the R project maps package (R Core Team 2018). Spatial data displayed is output from the simulation model.

Table 2. The percentage of partial log-likelihood for the stock assess-
ment model fits to catch per unit effort and catch at length.

Species CPUE scenario
Log-like.
from CPUE (%)

Log-like.
from catch at
length (%)

Red grouper Typical index 1.08 69.58
Extended index 0.52 97.61
Perfect information 3.30 68.17
Perfect info. and length 1.72 65.52

Gag grouper Typical index 7.52 34.80
Extended index 11.07 68.43
Perfect information 2.89 73.12
Perfect info. and length 2.86 73.52

Red snapper Typical index 3.68 0.37
Extended index 16.84 3.54
Perfect information 21.83 1.91
Perfect info. and length 21.41 0.18

Mutton snapper Typical index 7.02 0.04
Extended index 6.50 0.05
Perfect information 0.22 0.05
Perfect info. and length 0.33 0.07
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Fig. 8. Comparison of population size structure from the simulation (points) and estimated population size structure from the perfect information
index assessment model, and the assessment model that incorporated the perfect information index and the population size structure adjusted for
selectivity. Note that the figure for gag grouper has both the dashed and solid lines plotted on top of one another.

Fig. 9. Comparison of the fraction of deviance reduced by the typical and extended standardizations for the handline and longline fleets, where the
extended standardization generalized linear models incorporated additional factors related to fisher decision-making. [Colour online.]
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their business was explicitly represented in this simulation study.
This is infrequently considered a source of uncertainty or bias in
fisheries population modeling. The location and timing of fishery-
dependent data collection are governed by the behaviors and
decision-making patterns of fishers, which are not concerned
with statistical sampling designs. As a result, fishery-dependent
data are not equivalent to data collected through a scientific sur-
vey approach (Chen and Rajakaruna 2003). If fishery-dependent
data are not representative of the whole population, and instead
reflect localized dynamics, this can lead to biased indices and
biased size distributions and ultimately lead to biased estimates of
stock status (Wiedenmann et al. 2017; Goethel and Berger 2017).

A disproportionality between CPUE indices and abundance or
biomass over time (Harley et al. 2001) and approaches for handling
this (Maunder et al. 2006; Maunder and Punt 2004) have been
explored through simulation studies (Swain and Sinclair 1994;
Gillis and Peterman 1998) and by evaluating empirical data
(Cooke and Beddington 1984; Richards and Schnute 1986; Rose
and Leggett 1991). More recently, some work has been done to
evaluate possible impacts to stock assessment of bias in fishery-
dependent length frequency samples (Heery and Berkson 2009).
Francis (2017) and Thorson et al. (2017) both discussed the utility of
data and likelihood reweighting in stock assessment models, as
well as the use of the Dirichlet-multinomial distribution to im-
prove fits to length samples. The techniques described in these
two studies could help improve assessment model fit under some
circumstances, but additional research is needed. In our imple-
mentation, size composition data were weighted relative to their
actual sample sizes (i.e., actual sample size divided by 1000).

Several behavioral patterns were observed that could contrib-
ute bias to fishery-dependent catch, effort, and length sampling
data. Repeatedly fishing the same locations in the simulation
caused local depletion of the population at frequently visited lo-
cations and underutilization of fish at locations visited less often;
this was highly influenced by the habit parameter in the discrete
choice model fits. Recurring visits to the same fishing locations
are common in many fisheries (Holland and Sutinen 2000) and
is driven by a need for supply predictability to satisfy species-
specific catch requests within a specified timeframe (Saul and Die
2016). Data from fisheries that frequent the same locations could
be biased by local depletion effects (Davies et al. 2014; Holland and
Sutinen 2000).

In other locations that experienced little or no fishing pressure,
a de facto “refugia effect” protected higher abundance and larger
animals (Shephard et al. 2012). These lightly fished areas contrib-
uted to an increase in spawning stock biomass, recruitment, and
population growth (see Supplementary material Figs. S.11 and
S.121 for example; Dugan and Davis 1993). Without properly sam-
pling areas of higher abundance or biomass, the effect of such
areas on the stock cannot be properly accounted for in the assess-
ment model (Marriott et al. 2017). Thus, in our study the stock
assessments had a good understanding of the stock dynamics
where fishing frequently occurred and a poor understanding of
stock dynamics elsewhere across the range of the population
(Kraak et al. 2009; Vinther and Eero 2013).

Our study demonstrated that the local depletion of gag grouper
and red snapper led to hyperdepleted indices at the start of the
time series and artificially pessimistic stock status estimates (Sup-
plementary material Figs. S.12 and S.131). The spatial distribution
of red grouper biomass (Supplementary material Fig. S.111) also
showed the occurrence of local depletion resulting in hyperdeple-
tion of the biomass index at the start of the time series; however,
it did not alter the stock status criterion by very much. Fisheries
assessment scientists should exercise caution with computing in-
dices from fisheries-dependent data in fisheries that continually
return to past locations for structure-oriented species, as the data
may not reflect the dynamics of the stock across its entire spatial
domain (Salthaug and Aanes 2003; Smith et al. 2009).

Walters (2003) and others (Gelfand et al. 2012) have shown that
not accounting for imbalanced spatial sampling can lead to the
development of indices that declined more rapidly than an index
adjusted for spatial sampling bias. Other studies, like this one,
also found that not addressing spatial complexities could affect
biological reference points (Goethel and Berger 2017; Little et al.
2017). Recommendations made by Campbell (2015) regarding han-
dling things like the imputation of missing values, handling out-
liers, the use of random effects, proper modeling of interactions,
and weighted model fits could be applied to develop a more accu-
rate index. Recent work applying VMS data has shown some suc-
cess for correcting spatial bias and improving resource assessments
(Cao et al. 2017).

Standardization of population indices is most successful when
it accounts for differences in catchability across time (Wilberg
et al. 2010). As a control in the simulation model, all aspects of
catchability that could change over time, except for fisher behav-
ior, were kept constant, such as environmental, biological, and
management processes. The only changes made by the simulated
fishers in the agent-based model were those made to fisher behav-
ior through explicitly representing the decisions of when to fish,
where to fish, and when to return to port. Wilberg et al. (2010)
recommended that adjustments to account for changes in catch-
ability be made through either the standardization of CPUE,
down-weighting or ignoring an index, or through explicitly mod-
eling catchability within the stock assessment model as a function
of time and (or) space. In this study, efforts were made to include
additional factors into the standardization of CPUE that would
represent fisher behavior and could be collected as value added to
already existing sampling approaches in place for this fishery.
Although this approach did not necessarily result in an improved
index or assessment outcome, it did change the unexplained de-
viance in some cases. This is because in this study, fisher behavior
resulted in catch rate changes that CPUE indices interpreted as
changes in abundance, causing a mismatch between the index
and the true population trend.

In addition to the CPUE indices, the catch at length data in-
cluded in the stock assessment models was also fishery-dependent
and therefore also not representative of the population, even after
filtering through selectivity functions in Stock Synthesis. The size
distribution of fish caught in the simulation was also a function of
spatial fishing location and local depletion. Therefore, neither the
assessment model with the perfect information index nor the
assessment model with both the perfect information index and
the population length structure (adjusted for selectivity) were
able to properly recreate the population size structure, resulting
in inaccurate estimates of fishing mortality and biomass.

In this study, the spatial behavior of fishers also interacted with
the spatial behavior of the fish. Only ontogenetic movements
were represented by simulated fish and occurred at the onset of
maturity. Once settled in adult habitat, fish no longer moved in
the simulation. Life histories of the species modeled suggest lim-
ited adult movements, with species constrained to areas of essen-
tial habitat that match their life history stage and spawning
strategy for long periods of time (Coleman et al. 2000). Red snap-
per exhibits high residence times in certain habitats prior to mov-
ing to another location (Patterson and Cowan 2003; Karnauskas
et al. 2016), gag grouper and mutton snapper seasonally migrate to
spawn in aggregations (Coleman et al. 1996; Burton et al. 2005),
while red grouper is largely sedentary and does not relocate to
spawn (Harter et al. 2017; Ellis 2019). If the species modeled moved
around on a more regular basis, such that the populations were
spatially well mixed, we suspect that the calculated indices and
stock assessment results would have more closely represented
simulated population conditions (Rose and Kulka 1999; Alós et al.
2018).

Simplifying assumptions were required when developing both
the agent-based simulation model, as well as the Stock Synthesis
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assessment models. Neither the simulation nor the stock assess-
ment models included the behaviors or drivers of markets, supply
chains, or firms with influential effects that trickle down to affect
fisher behavior and thus population dynamics (Nightingale 2011).
Fisher behavior was also “statistically fixed” in the agent-based
model, meaning that all fisher agents within the same fleet used
the same set of discrete choice model-fitted parameters to make
decisions (Saul and Die 2016). Learning was not directly repre-
sented in the simulation model but was indirectly modeled
through the inclusion of a variable indicating the frequency that
individuals fished in a location. It is important to acknowledge
that the results of this study may not mirror the real world be-
cause the simulation and assessment models may be different
from the real world. Nevertheless, broad spatial patterns of the
resulting simulated fishing effort showed reasonable similarity
with observed data.

Finally, the assessment models were not able to successfully
capture the size structure of the simulated populations, even
when the selectivity-filtered true length composition of the pop-
ulation was used in the assessment models. This indicates that the
catch at size data from the simulated fishery were probably not
driving the difference between the stock status of the simulation
and that calculated by the assessment models. Examination of
assessment model output figures indicated that all stock assess-
ment models fit well to the size composition data, and nearly all
selectivity and retention function parameters were well esti-
mated. As such, there was no indication (other than our knowl-
edge from the simulation) that the assessment model’s estimation
of population size structure was misaligned with that of the sim-
ulation.

This is a concern, because it means that the model diagnostics
cannot alert us to a mismatch between the fishery data and the
population. Research suggests that information contained in the
size composition data that would help improve the estimates of
absolute abundance and time trends in abundance could be incor-
rect (Minte-Vera and Uosaki 2017). In our study, the Stock Synthe-
sis assessment model assumed a well-mixed population where all
individuals within the same size class experience the same fishing
mortality rate. However, the interacting spatial structures of the
fish populations and fishing fleets produced spatially different
fishing mortality rates. This inability to identify this phenomenon
led to the error observed in the assessment models (Cao et al.
2020). Further research is recommended to evaluate under what
conditions this may occur and how it could be detected and cor-
rected in actual assessments.

Conclusions
This study demonstrated that fisher behavior could introduce

bias to fishery stock assessments through the inclusion of fishery-
dependent data and spatial differences in fishing mortality. This
could occur at the intersection of several processes: when (i) the
spatial decision-making patterns of fishers, and therefore their
fishing effort, does not randomly sample the spatial distribution
of the fish, (ii) the spatial distribution of the fish is patchily dis-
tributed and the fish exhibit some degree of site fidelity for sub-
stantial periods of their life history, and (iii) fishers repeatedly
visit the same fishing locations causing local depletion. Under
these conditions, fishery-dependent data provides stock assess-
ment models with disproportionately more information from the
places heavily visited by fishers and less information from the
places lightly fished. Owing to local depletion effects, the struc-
ture of the population in heavily visited locations is different from
the average population structure across the spatial domain.

Because of data limitations, the use of fishery-dependent data in
stock assessments is inevitable in most applications. Spatially re-
weighting fishery-dependent data (Maunder et al. 2020; Walter
et al. 2014; Walters 2003) and including indices of abundance or

biomass from scientific surveys, as is often done, could help pro-
vide stock assessments with a more accurate reconstruction of the
population. In addition, recent work combining logbook data
with vessel monitoring system data in the Gulf of Mexico cor-
rected for sampling bias and found that indices provided a more
robust estimate of abundance trends (Ducharme-Barth et al. 2018).
When considering data collection for stock assessment, locations
that are undersampled should be considered for additional sam-
pling effort to provide stock assessment models with spatially
balanced inputs. Spatially structured stock assessment models
provide the ability to model some degree of spatial heterogeneity
in the fish and fishers (Methot and Wetzel 2013; Maunder et al.
2020), which could help address some of this issue. In many cases,
however, spatial assessment models can only be fit at coarse spa-
tial scales and may not be able to address spatial dynamics occur-
ring at fine scales (Maunder et al. 2020).

When using assessment results to develop advice for fisheries
management, spatially explicit management strategy evaluation
tools (Punt et al. 2016) that explore the bioeconomic trade-offs of
different management actions can help mitigate any negative ef-
fects of stock assessment uncertainty (Bailey et al. 2019). Interdis-
ciplinary work is recommended between fisheries scientists and
fisheries economists that finds ways to quantitatively merge stock
assessment and fisher behavior modeling.
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