With Great Power Comes Great Responsibility: 10 Things
to Know About Steepness for Stock Assessments

Marc Mangel
Department of Applied Mathematics, UCSC
Department of Biology, University of Bergen
Puget Sound Institute, University of Washington, Tacoma

JACK BASKIN SCHOOL OF ENGINEERING

BIOTECHNOLOGY, INFORMATION TECHNOLOGY, NANOTECHNOLOGY



Thing #1: How We Write the Beverton-Holt SRR Affects Interpretability

Ray (left) and Sidney, 1949



Thing #1: How We Write the Beverton-Holt SRR Affects Interpretability

Ray (left) and Sidney, 1949



Thing #1: How We Write the Beverton-Holt SRR Affects Interpretability
OéET

R(Er) = 5

Comment: What follows can be done for
Ricker SRR 1f that 1s your preference

Ray (left) and Sidney, 1949



Thing #1: How We Write the Beverton-Holt SRR Affects Interpretability
OéET

B B+ Er

R(ET)

o = Recruits as eggs become infinite

Ray (left) and Sidney, 1949



Thing #1: How We Write the Beverton-Holt SRR Affects Interpretability

Ray (left) and Sidney, 1949



Thing #1: How We Write the Beverton-Holt SRR Affects Interpretability
OéET

B B+ Er

R(ET)

o = Recruits as eggs become infinite

8 : :
— = Maximum egg survival

B

Ray (left) and Sidney, 1949



Thing #1: How We Write the Beverton-Holt SRR Affects Interpretability
OéET

R(Er) = 5

o = Recruits as eggs become infinite

8 : :
— = Maximum egg survival

B

Jon, Dick Gomulkiewicz, Marc 1989



Thing #1: How We Write the Beverton-Holt SRR Affects Interpretability
OéET

B B+ Er

R(ET)

o = Recruits as eggs become infinite

% = Maximum egg survival
OéET
R(ET) =
(Er) 1+ BET

Jon, Dick Gomulkiewicz, Marc 1989



Thing #1: How We Write the Beverton-Holt SRR Affects Interpretability
OéET

B B+ Er

R(ET)

o = Recruits as eggs become infinite

% = Maximum egg survival
OéET
R(ET) =
(Er) 1+ BET

a = Maximum egg survival

Jon, Dick Gomulkiewicz, Marc 1989



Thing #1: How We Write the Beverton-Holt SRR Affects Interpretability
OéET
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a = Maximum egg survival
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a = Maximum egg survival

sgr(7) = Egg survival to time 7 of the ER interval
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Life time individual egg production
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Models Can Teach Us a LOT

AN E % = a9
av __oenr MN set Er =¢N  and
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Common Name

Cabezon
Canary Rockfish
Cowcod
Darkblotched
Rockfish
Greenstriped
Rockfish
Lingcod
Splitnose
Rockfish
Arrowtooth
Flounder

Black Rockfish,
North

Black Rockfish,
South

Blue Rockfish
Chilipepper

Rockfish

Longnose Skate

Scientific Name

Scorpaenichthys

marmoratus

Sebastes pinniger

Sebastes levis

Sebastes crameri

Sebastes elongatus

Ophiodon elongatus

Sebastes diploproa

Atheresthes stomias

Sebastes melanops

Sebastes melanops

Sebastes mystinus

Sebastes goodei

Raja rhina
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Thing #10: Faster Growth Makes the Age-Structured Model More and More
Like the Production Model
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Thing #11, Bonus Track: If You Don't Know What Determines Recruitment,

The Right Prior Is Uniform, Tied Down at 0.2 and 1



Thing #11, Bonus Track: If You Don't Know What Determines Recruitment,

The Right Prior Is Uniform, Tied Down at 0.2 and 1
How to be Wrong




Thing #11, Bonus Track: If You Don't Know What Determines Recruitment,

The Right Prior Is Uniform, Tied Down at 0.2 and 1
How to be Wrong

h=1



Thing #11, Bonus Track: If You Don't Know What Determines Recruitment,

The Right Prior Is Uniform, Tied Down at 0.2 and 1
How to be Wrong

h=1 means Pr{R(0.2B,)=R,}=1



Thing #11, Bonus Track: If You Don't Know What Determines Recruitment,

The Right Prior Is Uniform, Tied Down at 0.2 and 1
How to be Wrong

h=1 means Pr{R(0.2B,)=R,}=1

With certainty, recruitment at 20% of unfished biomass
1s unfished recruitment. You know a lot about what
determines recruitment.



Thing #11, Bonus Track: If You Don't Know What Determines Recruitment,

The Right Prior Is Uniform, Tied Down at 0.2 and 1

How to be Wrong \
=1 . — — How Not to
h means Pr{R(0.2B,)=R,}=1 Be Wrong
With certainty, recruitment at 20% of unfished biomass The Power of
. . Mathematical
1s unfished recruitment. You know a lot about what Thinking
determines recruitment. Jordan ©

Ellenberg
HOW tO NOt be Wrong One of BILL GATES’s “10 Favorite Books"



Thing #11, Bonus Track: If You Don't Know What Determines Recruitment,

The Right Prior Is Uniform, Tied Down at 0.2 and 1

How to be Wrong Q\&
h=1 2BY=R =1 How Neot to
means Pr{R(0.2B,)=R,} Be Wrong

With certainty, recruitment at 20% of unfished biomass The Power of

- - Mathematical
1s unfished recruitment. You know a lot about what Thinking

determines recruitment. ijlorCIan 0
Ellenber

How to Not be Wrong g

If recruitment at 20% of unfished biomass can take any value between 20% of

unfished recruitment and unfished recruitment, steepness ranges between 0.2 and
1.0 (tied down at both ends by biology).



Thing #11, Bonus Track: If You Don't Know What Determines Recruitment,

The Right Prior Is Uniform, Tied Down at 0.2 and 1

How to be Wrong Q\&
h=1 , — — How Neot to
| | means | Pr{R(0.2B,)=R,} =1 | Be Wrong

With certainty, recruitment at 20% of unfished biomass The Power of
1s unfished recruitment. You know a lot about what Mqrt#.ewatlcal

- - Inking
determines recruitment.. '|j| or CIL an 0

Ellenber
How to Not be Wrong g

If recruitment at 20% of unfished biomass can take any value between 20% of
unfished recruitment and unfished recruitment, steepness ranges between 0.2 and
1.0 (tied down at both ends by biology).

(9)
Michielsens and McAllister.
2004. CJFAS 61:1032-1047
0.0 0.2 0.4 0.6 0.8 1.0

Prior steepness of B=H function for each stock




Some Citations

2010 Mangel, M., Brodziak, J.K.T., and G. DiNardo. Reproductive
ecology and scientific inference of steepness: a fundamental metric of

population dynamics and strategic fisheries management. Fish and
Fisheries 11:89-104. Erratum

2013 Mangel, M., MacCall, A.D., Brodziak, J., Dick, E.J., Forrest,
R.E., Pourzand, R., and S. Ralston. A perspective on steepness,

reference points, and stock assessment. Canadian Journal of Fisheries
and Aquatic Sciences 70:930-940

2014 Brodziak, J., Mangel, M. and C-L Sun Stock-recruitment
resilience of North Pacific striped marlin based on reproductive

ecology. Fisheries Research, http://dx.do1.org/10.1016/;.f1shres.
2014.08.008


http://www.soe.ucsc.edu/~msmangel/Mangel%20et%20al%20FaF%202010.pdf
http://www.soe.ucsc.edu/~msmangel/FAFerratum.pdf
http://www.soe.ucsc.edu/~msmangel/Brodziak%20et%20al%202014%20Fish%20Res.pdf
http://www.soe.ucsc.edu/~msmangel/Mangel%20et%20al%20CJFAS%202013.pdf




Options for Moving Forward

Do Not Fix Steepness and Mortality Rate
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Do Not Fix Steepness and Mortality Rate

When will data be informative?

Use Simulation Methods to determine what kinds of data
are necessary so that steepness and natural mortality can
be estimated in the stock assessment
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Do Not Fix Steepness and Mortality Rate

Already started:

Lee, H.-H. et al. 2011. Estimating natural mortality within a
fisheries stock assessment model: An evaluation using
simulation analysis based on twelve stock assessments.

Fisheries Research 109: 89-94.

Lee, H.-H. et al. 2012. Can steepness of the stock—
recruitment relationship be estimated in fishery stock

assessment models? Fisheries Research 125-126: 254-261.
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Replace the BH-SRR by a SRR that Avoids the Problem

An example: Maynard Smith/Shepherd model
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There is still an undetermined parameter for the analysis -- the
data can tell us something! -and if not
we need to integrate over the potential range of n



