Reef Fish Recreational Management for Headboat Survey Vessels

Amendment 42 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico Draft

April 2018

This page intentionally left blank.

ABBREVIATIONS USED IN THIS DOCUMENT

ACL annual catch limit
ACT annual catch target
AM accountability measure

AP Advisory Panel BiOp Biological Opinion

Council Gulf of Mexico Fishery Management Council

CZMA Coastal Zone Management Act
DPS distinct population segment

DOA Data Quality Act

EEZ exclusive economic zone EFH essential fish habitat

EIS environmental impact statement

EJ environmental justice ESA Endangered Species Act

FL fork length

FMP Fishery Management Plan

Gulf of Mexico gw gutted weight

HAPC habitat area of particular concern

HBC headboat collaborative

Headboat AP Ad Hoc Reef Fish Headboat Advisory Panel

IFQ individual fishing quota

LAPP limited access privilege program

LHV Landings History Vessel

Magnuson-Stevens Act Magnuson-Stevens Fishery Conservation and Management Act

MFMT maximum fishing mortality threshold MMPA Marine Mammal Protection Act

mp million pounds

MRFSS Marine Recreational Fisheries Survey and Statistics

MRIP Marine Recreational Information Program

MSST minimum stock size threshold MSY maximum sustainable yield NMFS National Marine Fisheries Service

NOAA National Oceanic and Atmospheric Administration

NOR net operating revenue
OFL overfishing limit
OY optimum yield

PAH polyaromatic hydrocarbons

PFQ permit fishing quota
PS producer surplus
RA Regional Administrator

Reef Fish FMP

SCL straight carapace length Secretary Secretary of Commerce SEDAR Southeast Data, Assessment, and Review

SEFSC Southeast Fisheries Science Center

SERO Southeast Regional Office

SPR

SRD Science and Research Director SRHS Southeast Region Headboat Survey

SSASPM

SSB spawning stock biomass

SSBR

SSC Scientific and Statistical Committee

TAC total allowable catch

TL total length

TPWD Texas Parks and Wildlife Department

VMS vessel monitoring system VOC volatile organic compounds

ww whole weight

ii

TABLE OF CONTENTS

Abbreviations Used In This Document	i
List of Tables	v
List of Figures	vii
Chapter 1. Introduction	1
1.1 Background	1
1.2 Purpose and Need	4
1.3 History of Management	4
Chapter 2. Management Alternatives	16
2.1 Action 1. Type of Recreational Management Program for Landings History Vessels	16
2.2 Action 2. Species to Include in the LHV Management Program	19
2.3 Action 3. Participation at the Onset of the LHV Program	22
2.4 Action 4. Landings History Vessel Endorsement or Permit	24
2.5 Action 5. Allocation of Annual Catch Limit to the Landings History Vessel Program.	26
2.6 Action 6. Units of Measure for Quota Distribution and Reporting	32
2.7 Action 7. Initial Apportionment of Shares	34
Action 7-1. Time Period of Landings to Determine Initial Apportionment of Shares	34
Action 7-2. Distribution of Initial Shares	37
2.8 Action 8. Transferability of Shares (IFQ only)	39
2.9 Action 9. Maintenance of Shares	40
2.10 Action 10. Transferability of Annual Allocation	41
2.11 Action 11. Share Caps	43
2.12 Action 12. Cap on Allocation Usage	44
2.13 Action 13. Retaining Annual Allocation before a Quota Reduction	45
2.14. Action 14. Cost Recovery Fees.	46
2.15. Action 15. New Entrants	48
2.16. Action 16. Set-Aside for New Entrants	49
Action 16-1. Amount of LHV Quota to Set Aside at the Onset of the Program	49
Action 16-2. Eligibility to Receive Set Aside Shares	50
Action 16-3. Distribution of the Set Aside to New Entrants	50
Chapter 3. Affected Environment	52
3.1 Description of the Fishery	52

iii

3.1.1 Commercial Sector	52
3.1.2 Recreational Sector	53
3.2 Description of the Physical Environment	56
3.3 Description of the Biological Environment	58
3.4 Description of the Economic Environment	84
3.4.1 Commercial Sector	84
3.4.2 Recreational Sector	84
3.5 Social Environment	89
3.5.1 Recreational Fishing Communities	90
3.5.2 Environmental Justice Considerations	94
3.6 Description of the Administrative Environment	97
3.6.1 Federal Fishery Management	97
3.6.2 State Fishery Management	98
Chapter 4. References	99
Appendix A: Other Applicable Law	. 118
Appendix B: Headboat AP Meeting Summaries	. 121
Appendix C: Considered But Rejected Alternatives	. 130
Appendix D: AP Preferred Alternatives	. 131
Appendix E. Current Federal Regulations for Gulf of Mexico Recreational Red Snapper Management	135
Appendix F. Historical Recreational Landings Tables	
Appendix G. Summary of Habitat Utilization by Life History Stage for Species in the Reef I	

iv

LIST OF TABLES

Table 2.2.1. Landings (in pounds) of red snapper by LHV from 2011 through 2015 by homeport
region, plus percentage of the total recreational landings
Table 2.2.2. Landings (in pounds) of gray triggerfish by LHV from 2011 through 2015 by
homeport region, plus percentage of the total recreational landings
Table 2.2.3. Landings (in pounds) of greater amberjack by LHV from 2011 through 2015 by
homeport region, plus percentage of the total recreational landings
Table 2.2.4. Landings (in pounds) of gag by LHV from 2011 through 2015 by homeport region,
plus percentage of the total recreational landings
Table 2.2.5. Landings (in pounds) of red grouper by LHV from 2011 through 2015 by homeport
region, plus percentage of the total recreational landings
Table 2.2.6. Overfished and overfishing status of Gulf stocks considered for Amendment 42. 21
Table 2.5.1. Landings by LHV as a percentage of total landings
Table 2.5.2. Percentage of the red snapper for-hire and total recreational landings harvested by
LHV
Table 2.5.3. Number of vessels in the SRHS with landings, 2004-2015
Table 2.5.4. Buffers between the recreational ACL and ACT for each species
Table 2.5.5. Recreational red snapper landings (in pounds) harvested by the for-hire component
of the recreational sector. Table 2.6.1 Minimum and manipum monthly average in account fish variety (in payed) for
Table 2.6.1. Minimum and maximum monthly average in-season fish weights (in pounds) for the HBC pilot program
Table 2.7.1. Preliminary frequency distribution of red snapper shares (percent of the total LHV landings) by vessel based on 2015 landings
Table 2.7.2. Preliminary frequency distribution of greater amberjack shares (percent of the total
LHV landings) by vessel based on 2015 landings
Table 2.7.3. Preliminary frequency distribution of gray triggerfish shares (percent of the total
LHV landings) by vessel based on 2015 landings
Table 2.7.4. Preliminary frequency distribution of gag shares (percent of the total LHV
landings) by vessel based on 2015 landings
Table 2.7.5. Preliminary frequency distribution of red grouper shares (percent of the total LHV
landings) by vessel based on 2015 landings.
Table 2.16.1 Recreational ACLs, percentage and pounds allocated to the LHV program and set
aside amounts by species. LHV program allocations are based on Action 5 – Alternative 4 50
Table 3.1.1. Allocations of five species of reef fish between sectors
Table 3.1.1.1. Commercial minimum size limits (total length [TL] or fork length [FL]), trip
limits, and closed seasons for five species of reef fish in the Gulf
Table 3.1.2.1. Recreational minimum size limits, bag limits, and seasons for five species of reef
fish in the Gulf. Season closures can occur prior to the end of the fishing season if a species'
quota is caught or is projected to be caught
Table 3.1.4. Recent headboat landings (in pounds) for five species of reef fish. 55
Table 3.1.5. Length of state and federal red snapper recreational seasons in days. Separate
seasons were set for private angling and federal for-hire vessels beginning in 2015 55
Table 3.3.1. Status of species in the Reef Fish FMP grouped by family
Table 3.3.2. Reef fish stock that have assessments and accepted status determinations

 \mathbf{v}

Table 3.3.3. Reef fish stocks deemed unsuitable by the SSC for stock status and management	ıt
advice	61
Table 3.3.4. Data limited assessments were attempted for the seven reef fish stock below, bu	t no
stock status determinations were made	62
Table 3.3.6. Total Gulf greenhouse gas 2014 emissions estimates (tons per year [tpy]) from	oil
platform and non-oil platform sources, commercial fishing, and percent greenhouse gas	
emissions from commercial fishing vessels of the total emissions*	81
Table 3.4.2.1. Headboat angler days and percent distribution, by state, 2012-2016	85
Table 3.4.2.2. Total Gulf headboat trips and average trips per headboat by trip type and year	.,
2011-2016. Trips include reported and estimated trips.	86
Table 3.4.2.3. Average Fee per Angler/Trip by Trip Duration for Gulf Headboats, 2012-2015	5.
(2016 dollars)	87
Table 3.4.2.4. Headboat Trip Characteristics by Trip Duration, 2015. (2016 dollars)	88
Table 3.5.1.1. Number of federal reef fish for-hire permits, including historical captain perm	nits,
by state and by year	91
Table 3.5.1.2. Communities with the greatest number of federal reef fish for-hire permits,	
including historical captain permits, in descending order.	92
Source: NMFS SERO permit office, September 20, 2016.	
Table 3.6.1 Gulf of Mexico state marine resource agencies and Web pages.	

vi

LIST OF FIGURES

Figure 3.2.1. Physical environment of the Gulf, including major feature names and m	ean annual
sea surface temperature	57
Figure 3.3.1. Underwater photograph of a female gray triggerfish guarding eggs in a	
northern Gulf of Mexico.	67
Figure 3.5.1.1. Top 20 recreational fishing communities' engagement and reliance	90
Figure 3.5.1.2. Distribution of headboats with federal for-hire permits for Gulf reef fi	sh in Gulf
states, by community.	93
Figure 3.5.2.1. Social vulnerability indices for recreational fishing communities	
Figure 3.5.2.2. Social vulnerability indices for recreational fishing communities conti	nued 96

CHAPTER 1. INTRODUCTION

1.1 Background

The Gulf of Mexico Fishery Management Council (Council) has taken steps to provide more flexibility in managing various components of the reef fish recreational sector. In 2014, the Council approved Amendment 40 to the Fishery Management Plan for Reef Fish Resources in the Gulf of Mexico (Reef Fish FMP) which established separate private angling and federal forhire components of the red snapper recreational sector in the Gulf of Mexico (Gulf), allocated the red snapper recreational annual catch limit (ACL) between these two components, and implemented separate closure provisions for each component. The federal for-hire component includes all for-hire operators with a valid or renewable federal reef fish charter/headboat permit (reef fish for-hire permit). The private angling component includes all other for-hire operators and private recreational anglers. The decrease over time in the proportion of the red snapper recreational ACL harvested by anglers fishing from federal for-hire vessels and differences in regulatory environments faced by federal for-hire operators and private anglers - including changes in state regulations relative to red snapper - contributed to the Council's decision to restructure the red snapper recreational sector as discussed in Amendment 40 (GMFMC 2014). Recreational fishing for other reef fish species has not been as restricted as red snapper, but fishing has closed for several species in federal waters in recent years for some of the same reasons. Also, some state water fishing seasons have differed from federal seasons. Thus, other species may also benefit from flexible management for different components of the recreational sector.

In early 2015, the Council requested the initiation of an amendment addressing management for

the reef fish headboat component and established an Ad Hoc Reef Fish Headboat Advisory Panel (Headboat AP). The charge to the Headboat AP was to make recommendations relative to the design and implementation of flexible measures for the management of reef fish for the headboat component of the recreational sector. In addition to the Headboat AP, the Council also created an Ad Hoc Red Snapper Charter Vessel AP, which was tasked with recommending measures for the management of red snapper for charter vessel operators, and requested the initiation of an amendment specific to charter vessels fishing for red snapper (Amendment 41).

Definitions

Southeast Region Headboat Survey (SRHS) – NMFS survey of headboats in the Gulf of Mexico and South Atlantic

Landings History Vessel (LHV) – a vessel that has a valid or renewable Gulf reef fish for-hire permit with individual landings history recorded by the SRHS as of December 31, 2015

Recreational Annual Catch Limit (ACL) – pounds of fish allowed to be landed by recreational fishers (includes anglers, fishing from private vessels, charter boats, and headboats)

Red Snapper For-hire Quota - pounds of red snapper allowed to be landed by federally-permitted for-hire vessels (charter boats and headboats)

Management measures under consideration in Amendment 42 include allocation-based programs and recommendations made by the Headboat AP. Summary reports of the Headboat AP meetings, including recommendations provided to the Council in May 2015 and May 2016, are provided in Appendix A.

In the Gulf, the National Marine Fisheries Service (NMFS) issues one reef fish for-hire permit that does not distinguish between headboats and charter vessels. Therefore, the development of two distinct amendments addressing the management of red snapper for the charter vessel component (Amendment 41) and the management of reef fish for the headboat component (Amendment 42) requires clear definitions of which vessels would be included in each amendment. The Council established a December 31, 2015 control date to help determine the time period during which vessels could meet the eligibility criteria for Amendment 42.

The Southeast Region Headboat Survey (SRHS) collects catch and effort data from headboats in the southeast region, thereby producing a landings history for each vessel included in the survey. In the Gulf, for the purpose of reporting (as specified in 50 C.F.R. § 622.26(b)), the SRHS considers a for-hire vessel to be a headboat if it meets these criteria:

- 1) Vessel is licensed to carry 15 or more passengers (as indicated on the vessel's certificate of inspection;
- 2) Vessel fishes in the exclusive economic zone or state and adjoining waters for federally managed species; and
- 3) Vessel charges primarily per angler (i.e., by the "head").

The SRHS has been conducted in the Gulf since 1986¹. However, detailed catch histories by individual vessels were only recorded starting from 2004. In addition, for fishery managers, the SRHS continues to be the sole source for effort and landings estimates for the headboat component as a whole. For these reasons, the universe of vessels for Amendment 42 is defined as vessels that have valid or renewable Gulf reef fish for-hire permits with individual landings histories recorded by the SRHS as of the control date of December 31, 2015. Hereafter, these vessels are referred to as landings history vessels (LHV). For the Gulf, the number of LHV by state between 2011 and 2015 is provided in Table 1.1.1.

Table 1.1.1. Number of vessels reporting landings to the SRHS (LHVs) by Gulf state, 2011-2015.

Year	AL	FL	LA	MS	TX	Total
2011	8	35	4	5	17	69
2012	8	35	4	5	16	68
2013	8	36	3	5	16	68
2014	7	37	2	5	16	68
2015	9	36	2	5	15	68

Source: NMFS SRHS database 03/09/18.

Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act) Requirements for Limited Access Privilege Programs (LAPP)

¹ The SRHS also includes vessels with South Atlantic for-hire permits and some state-licensed vessels.

An LAPP uses federal permits to assign the right to harvest a quantity of fish representing a portion of the total allowable catch that may be received or held for exclusive use by a person. The two types of allocation-based programs being considered by the Council in Amendment 42 are an individual fishing quota (IFQ) program and a permit fishing quota (PFQ) program. Both types of programs are considered LAPPs and must meet certain Magnuson-Stevens Act requirements.

The Magnuson-Stevens Act states: "the Gulf Council(s) may not submit, and the Secretary may not approve or implement, a fishery management plan or amendment that creates an individual fishing quota program...unless such a system, as ultimately developed, has been approved by...a majority of those voting in the referendum among eligible permit holders with respect to the Gulf Council. For multispecies permits in the Gulf of Mexico, only those participants who have substantially fished the species proposed to be included in the individual fishing quota program shall be eligible to vote in such a referendum." The Council will determine which participants have substantially fished for the species proposed in this amendment and NMFS will conduct a referendum of those participants after details of the management program have been developed.

The Magnuson-Stevens Act prohibits any person from participating in a LAPP that is not a U.S. citizen, corporation, partnership, or other entity established under the laws of the U.S. or any state, or a permanent resident alien. It also requires participants to meet the eligibility and participation requirements established by the program. As previously indicated, for purposes of this amendment, all vessels must have valid or renewable Gulf reef fish for-hire permits with individual landings histories recorded by the SRHS as of December 31, 2015.

Section 303A(c) in the Magnuson-Stevens Act specifies requirements for LAPPs. The following is a list of the topics specified as LAPP requirements that may be relevant to potential management of the LHV:

- Goals and objectives of the program
- Program duration and provisions for regular review
- Enforcement, monitoring, and management
- Appeals process
- Initial allocation
- Maximum shares
- Transferability

The goals and objectives are provided in the Purpose and Need statement (Section 1.2). The Magnuson-Stevens Act specifies that a detailed review of the program be conducted after the first 5 years of implementation of the program and, thereafter, no less than once every 7 years. Section 303A(f) indicates a limited access privilege is a permit to be issued for no more than 10 years that will be renewed unless it has been revoked, limited, or modified.

An appeals process provides a procedure for resolving disputes regarding initial eligibility and distribution of shares and allocation. In the past, the Council has implemented regulatory actions in a number of fisheries that have included an appeals process for eligibility

determinations, including Amendment 29 which established the Grouper/Tilefish IFQ Program (GMFMC 2008a). In each instance, the Council has utilized a virtually identical process. Because the process has been consistent and has worked well in different circumstances, consideration of other options for appeals is not necessary. In addition, appeals would be processed by the NMFS National Appeals Office which is governed by the regulations and policy at 15 CFR Part 906. Details of the appeals process are described in the appropriate sections of Chapter 2.

Management alternatives are developed in this amendment for requirements that necessitate further specification by the Council. For example, actions in this document have been established to analyze alternatives for several requirements including, but not limited to, initial allocation, maximum shares, and transferability.

1.2 Purpose and Need

The purpose of this action is to reduce management uncertainty and improve economic conditions for Gulf reef fish headboat operators/owners, and provide flexibility by increasing fishing opportunities for their angler passengers through a management program for vessels with a valid or renewable Gulf reef fish for-hire permit with individual landings history recorded by the SRHS as of December 31, 2015.

The need for this action is to prevent overfishing while helping achieve the optimum yield (OY) from the harvest of reef fish, and taking into account and allowing for variations among fishery resources and participants.

1.3 History of Management

The Reef Fish FMP (with its associated Environmental Impact Statement [EIS]) was implemented in November 1984. The original list of species included in the management unit consisted of snappers, groupers, and sea basses. Gray triggerfish and *Seriola* species, including greater amberjack, were in a second list of species included in the fishery, but not in the management unit.

This summary focuses on management actions pertinent to recreational harvest of the reef fish species considered for this management program (red snapper, greater amberjack, gray triggerfish, gag, and red grouper) and the management of vessels with a for-hire permit. A complete history of management for the Reef Fish FMP is available on the Council's website.²

Management of the Recreational Sector

Since 1996, when **Amendment 11** was implemented, for-hire vessels fishing in federal waters are required to have a federal for-hire permit. The initial purpose of the permits was to address potential abuses in the bag limit allowances. It was thought that by having a permit to which

² http://gulfcouncil.org/fishery-management/implemented-plans/reef-fish/

sanctions could be applied would improve compliance. In addition, the permit requirement was seen as a way to enhance monitoring of the for-hire component of the recreational sector.

In 2003, a 3-year moratorium on the issuance of new for-hire permits was established through **Amendment 20** (GMFMC 2003), to limit further expansion in the for-hire fisheries, an industry concern, while the Council considered the need for more comprehensive effort management systems. This means that participation in the federal for-hire component is capped; no additional federal permits are available. The permit moratorium was extended indefinitely in 2006 through **Amendment 25** (GMFMC 2006). The number of for-hire permits has been decreasing since the establishment of the moratorium (GMFMC 2014a).

Regulatory Amendment, implemented in August 1999, closed two areas (i.e., created two marine reserves), 115 and 104 square nautical miles respectively, year-round to all fishing under the jurisdiction of the Council with a four-year sunset clause.

Amendment 30B (GMFMC 2008b) included an action requiring that vessels with federal commercial or for-hire permits comply with the more restrictive of federal or state regulations when fishing for reef fish, if regulations are different. The implementation of this provision reduced the fishing days available to vessels with a for-hire permit in comparison to the private recreational anglers, who were able to participate in the additional fishing opportunities provided in some state waters.

Finally, an amendment to require electronic reporting by charter vessels and to modify electronic reporting by headboats was approved by the Council at their January 2017 meeting. The purpose of the amendment is to improve the monitoring of for-hire vessel landings, thereby reducing the likelihood of exceeding the recreational sector ACL. The amendment is currently under review by the Secretary of Commerce (Secretary).

Generic Management Amendments

Generic Sustainable Fisheries Act Amendment, partially approved and implemented in November 1999, set the maximum fishing mortality threshold (MFMT) for most reef fish stocks at a fishing mortality rate corresponding to 30% spawning potential ratio (F_{30% SPR}).

Generic Tortugas Marine Reserves, implemented in August 2002, amended all seven FMPs and created two marine reserves where all fishing is prohibited. One 60 square mile reserve was created on a spawning aggregation site for mutton snapper in the Council's jurisdiction. The other (125 square miles) was created in the jurisdictions of the National Park Service, Florida Keys National Marine Sanctuary, Council, and State of Florida.

Recreational Red Snapper Management

A summary of red snapper management through 2006 can be found in Amendment 27/14 (GMFMC 2007) and in Hood et al. (2007), and is incorporated herein by reference. Prior to 1997, recreational fishing for all reef fish was open year round in federal waters of the Gulf. Although catch levels were controlled through minimum size limits and bag limits, the

recreational sector exceeded its allocation of the red snapper total allowable catch; however, the overages were declining through more restrictive recreational management measures. The Sustainable Fisheries Act of 1996 required the establishment of quotas for recreational and commercial fishing that, when reached, result in a prohibition on the retention of fish caught for each sector, respectively, for the remainder of the fishing year. With the establishment of a recreational quota in 1997, the Regional Administrator (RA) was authorized to close the recreational season when the quota is reached, as required by the Magnuson-Stevens Act. From 1997 through 1999, NMFS implemented the recreational red snapper quota requirement through an in-season monitoring process by establishing a quota monitoring team that, through monitoring landings data that were available, plus projecting landings based on past landings patterns, projected closing dates a few weeks in advance. Between 1996 and 2013, the recreational fishing season in federal waters decreased from 365 days to 42 days.³

An interim rule, published on April 2, 2007, reduced the red snapper total allowable catch to 6.50 million pounds (mp), resulting in a recreational quota of 3.19 mp; reduced the red snapper recreational bag limit from four fish to two fish per person per day; prohibited the captain and crew of for-hire vessels from retaining the recreational bag limit; and established a target red snapper bycatch mortality reduction goal for the shrimp fishery that equates to 50% of the bycatch mortality that occurred during 2001-2003 and a level of shrimp effort equal to that observed in the fishery in 2005.

In 2008, joint **Amendment 27/Shrimp Amendment 14** (GMFMC 2007) revised the rebuilding plan for red snapper. For the recreational sector, the rule implemented a June 1 through September 30 fishing season in conjunction with a 2.45 mp recreational quota, 16-inch total length (TL) minimum size limit, 2-fish bag limit, and zero bag limit for captain and crew of forhire vessels.

The Sustainable Fisheries Act required that the RA close the recreational red snapper season when the quota is projected to be met. When Reef Fish Amendment 27/Shrimp Amendment 14 (GMFMC 2007) was submitted to NMFS, the Council requested that the five Gulf states adopt compatible regulations in state waters. Florida adopted a compatible two-fish bag limit, but maintained its state red snapper fishing season of April 15 through October 31, 78 days longer than the federal fishing season. Texas also maintained its four-fish bag limit and year-round fishing season in its state waters. Prior to the start of the 2008 season, NMFS recalculated its projections for recreational red snapper catches in light of the state regulations, and projected that there would be a 75% probability that the recreational quota would not be exceeded if the season closed on August 5. As a result, NMFS took action to set the 2008 season to be June 1 to August 5.

A **February 2010 regulatory amendment** (GMFMC 2010a) increased the red snapper total allowable catch from 5.00 mp to 6.95 mp, which increased the recreational quota from 2.45 mp to 3.40 mp. However, NMFS estimated that in 2009, the recreational sector overharvested its quota by approximately 75%. In recalculating the number of days needed to fill the recreational

³ Upon availability of a quota increase in 2013, the 28-day recreational season was supplemented by a 14-day fall season for a total of 42 days.

quota, even with the quota increase, NMFS projected that the 2010 season would need to be shortened to June 1 through July 24, and published notice of those dates prior to the start of the recreational fishing season.

In April 2010, the *Deepwater Horizon* MC252 deep-sea drilling rig exploded and sank off the coast of Louisiana. Because of the resulting oil spill, approximately one-third of the Gulf was closed to fishing for much of the summer months. The direct loss of fishing opportunities due to the closure, plus the reduction in tourism throughout the coastal Gulf, resulted in a much lower catch than had been projected. After the recreational season closed on July 24, NMFS estimated that 2.30 mp of the 3.40 mp recreational quota remained unharvested (NMFS 2010). However, due to the fixed October 1 to December 31 closed season, NMFS could not reopen the recreational season without an emergency rule to suspend the closure. Consequently, the Council requested an emergency rule to provide the RA with the authority to reopen the recreational red snapper season. After considering various reopening scenarios, the Council requested that the season be reopened for eight consecutive weekends (Friday, Saturday and Sunday) from October 1 through November 21 (24 fishing days).

In January 2011, the Council submitted a **regulatory amendment** (GMFMC 2011a) to NMFS to increase the red snapper total allowable catch to 7.19 mp, with a 3.52 mp recreational quota. The final rule implemented the increase and established a 48-day recreational red snapper season that was June 1 through July 18.

On August 12, 2011, NMFS published an emergency rule that, in part, increased the recreational red snapper quota by 345,000 lbs for the 2011 fishing year and provided the agency with the authority to reopen the recreational red snapper season later in the year, if the recreational quota had not been filled by the July 19 closing date. However, in August of that year, based on headboat data plus charter boat and private recreational landings through June, NMFS calculated that 80% of the recreational quota had been caught. With the addition of July landings data plus Texas survey data, NMFS estimated that 4.40 to 4.80 mp were caught, well above the 3.87 mp quota. Thus, no unused quota was available to reopen the recreational fishing season.

A March 2012 regulatory amendment (GMFMC 2012b) set the 2012 recreational quota for red snapper at 3.96 mp based on a recent population assessment which showed that overfishing had ended. The regulatory amendment also eliminated the fixed recreational red snapper closed season of October 1 - December 31. By eliminating the closure date, NMFS can re-open the recreational harvest for red snapper if any remaining quota is available, without the delay of additional rulemaking. On May 30, 2012, NMFS published a final rule to increase the sector quotas and establish the 2012 recreational red snapper fishing season as June 1 through July 11. However, the north-central Gulf experienced extended severe weather during the first 26 days of the 2012 recreational red snapper fishing season, including Tropical Storm Debby. Due to the severe tropical weather, the season was extended by 6 days and closed on July 17.

On March 25, 2013, an emergency rule [78 FR 17882] was published in the *Federal Register* giving NMFS the authority to set separate closure dates for the recreational red snapper season in federal waters off individual Gulf states. The closure dates would depend on whether state

regulations were consistent with federal regulations for the recreational red snapper season length or bag limit.

A March 2013 framework action⁴ (GMFMC 2013a) modified the 2013 recreational red snapper quota to 4.15 mp. Based on the emergency rule to allow separate closure dates, NMFS announced that the recreational red snapper season in federal waters would open on June 1. Off Mississippi and Alabama, which had consistent state regulations, the season would be 34 days and close on July 5. The other Gulf States had inconsistent state regulations, and the fishing seasons in federal waters were announced as follows. Off Texas, the season would be 17 days and close on June 18. Off Louisiana, the season would be 24 days and close on June 25. Off Florida, the season would be 26 days and close on June 27.

Texas and Louisiana filed a legal challenge to the separate closure dates, and on May 31, 2013, the U.S. District Court in Brownsville, Texas, set aside the emergency rule. As a result of this Court decision, the recreational red snapper season in federal waters was changed to make it the same in federal waters off all five Gulf states. Considering the catches expected later in the year during the extended state-water seasons off Texas, Louisiana, and Florida, NMFS established a Gulf-wide federal recreational red snapper season at 28 days long, opening on June 1 and closing to recreational red snapper harvest at 12:01 a.m., June 29, 2013.

A **July 2013 framework action** (GMFMC 2013b) increased the 2013 recreational quota from 4.15 mp to 5.39 mp. The quota increase was implemented by re-opening federal waters to red snapper recreational fishing for 14 days beginning on October 1, 2013, and closing on October 15, 2013. Therefore, the total fishing days for 2013 was 42 days.

On March 26, 2014, in response to a legal challenge from commercial fishermen, the U.S. District Court for the District of Columbia ruled that NMFS failed to require adequate accountability measures (AM) for the recreational sector, failed to prohibit the retention of fish after the recreational quota had been harvested, and failed to use the best scientific information available when determining whether there should be a 2013 fall fishing season. In response to the Court's decision and to reduce the probability of the recreational sector exceeding its quota, the Council requested, through an emergency rule, that NMFS implement an annual catch target (ACT) that is 20% less than the 2014 recreational quota; the ACT would be used to set the season length in federal waters. The emergency rule, published on May 15, 2014, resulted in a recreational ACT of 4.31 mp. In addition, several Gulf states announced extended state-water fishing seasons. Given the additional harvest estimated to come from state waters, a 9-day fishing season in federal waters was established for 2014.

In October 2014, the Council approved a framework action to formally adopt the ACT as a buffer to the recreational sector ACL. The framework action also adopted a quota overage adjustment such that if the recreational quota is exceeded in a fishing season, the amount of the

_

⁴ Prior to 2013, regulatory actions made under the Reef Fish framework procedure for setting total allowable catch, or the generic framework procedure in the Generic Annual Catch Limits/Accountability Measures Amendment, were referred to as either framework actions or regulatory amendments. Beginning in 2013, such actions were referred to only as framework actions.

overage is deducted from the following year's quota (GMFMC 2014b). The final rule became effective April 20, 2015.

Amendment 40 (GMFMC 2014a) divided the recreational quota into a federal for-hire component quota (42.3%) and a private angling component quota (57.7%) for the recreational harvest of red snapper. In 2015, this resulted in an ACT of 2.371 mp for the federally permitted for-hire component (45 federal fishing days) and 3.234 mp for the private angling component (10 federal fishing days). The 2015 season closures for the recreational harvest of red snapper were determined separately for each component based on each component's ACT. Amendment 40 also included a 3-year sunset provision on the separation of the recreational sector into distinct components.

Amendment 28 (GMFMC 2015a) revised the commercial and recreational sector allocations of the red snapper ACL by shifting 2.5% of the commercial sector's allocation to the recreational sector. The resulting sector allocations for red snapper were 48.5% commercial and 51.5% recreational. This amendment became effective on May 31, 2016. The **Framework Action** to Retain 2016 Red Snapper Commercial Quota became effective December 28, 2015, which allowed the revised allocations established through Amendment 28 to be effective for the 2016 fishing year. For 2016, the private angling season was 11 days and the for-hire season was 46 days.

On March 3, 2017, a U.S. district court vacated **Amendment 28** and subsequently ordered that the sector quotas for 2017 be set consistent with the previous sector allocations of 51% commercial and 49% recreational. At the start of the 2017 fishing season, the private angling season was set at 3 days and the for-hire season was set at 49 days. However, the Department of Commerce reopened the private angling season for an additional 39 days June 16 through September 4 (weekends plus Independence Day and Labor Day holidays).

Amendment 45 (GMFMC 2016a) extended the separate management of the federal for-hire and private angling components for an additional 5 years through the 2022 red snapper fishing season.

Recreational Greater Amberjack Management

Amendment 1, implemented in 1990, added greater amberjack and lesser amberjack to the list of species in the management unit. It set a greater amberjack recreational minimum size limit of 28 inches fork length (FL) and a three-fish recreational bag limit. This amendment's objective was to stabilize the long-term population levels of all reef fish species by establishing a survival rate of biomass into the stock of spawning age to achieve at least 20% spawning stock biomass per recruit (SSBR), relative to the SSBR that would occur with no fishing. A framework procedure for specification of total allowable catch (TAC) was created to allow for annual management changes.

Amendment 12, implemented in January 1997, reduced the greater amberjack bag limit from three fish to one fish per person, and created an aggregate bag limit of 20 reef fish for all reef fish species not having a bag limit (including lesser amberjack, banded rudderfish, almaco jack,

9

and gray triggerfish). NMFS disapproved proposed provisions to include lesser amberjack and banded rudderfish along with greater amberjack in an aggregate one-fish bag limit and to establish a 28-inch FL minimum size limit for those species.

Generic Sustainable Fisheries Act Amendment, partially approved and implemented in November 1999, set the maximum fishing mortality threshold (MFMT) for greater amberjack at the fishing mortality necessary to achieve 30% of the unfished spawning potential F_{30% SPR}. Estimates of maximum sustainable yield (MSY), minimum stock size threshold (MSST), and OY were disapproved because they were based on spawning potential ratio (SPR) proxies rather than biomass-based estimates.

Secretarial Amendment 2, implemented in July 2003, for greater amberjack, specified MSY, OY, MFMT, and MSST. It also set a rebuilding plan limiting the harvest to 2.9 mp for 2003-2005, 5.2 mp for 2006-2008, 7.0 mp for 2009-2011, and for 7.9 for 2012. This was expected to rebuild the stock in 7 years. Regulations implemented in 1997 and 1998 (Amendments 12 and 15 to the Reef Fish FMP) were deemed sufficient to comply with the rebuilding plan so no new regulations were implemented.

Amendment 30A, implemented in August 2008, was developed to stop overfishing of gray triggerfish and greater amberjack. The amendment established ACLs and AMs for greater amberjack and gray triggerfish. For greater amberjack, the rebuilding plan was modified, increasing the recreational minimum size limit to 30 inches FL, implementing a zero bag limit for captain and crew of for-hire vessels, and setting commercial and recreational quotas.

Regulatory Amendment, implemented in June 2011, specified the greater amberjack recreational closed season from June 1 – July 31. The intended effect of this final rule was to mitigate the social and economic impacts associated with implementing in-season closures.

Amendment 35, implemented in 2012, in response to a 2010 update stock assessment, established a new ACL equal to the acceptable biological catch at 1.78 mp, which was less than the current annual catch limit of 1.83 mp. Reducing the stock ACL by 18% was expected to end overfishing. The Council also considered changes to bag limits and closed season management measures for the recreational fishing sector but did not alter any recreational management measures.

A Framework Action, implemented in January 2016, adjusted the ACLs, reduced the recreational minimum size limit to 34 inches FL, and reduced the commercial trip limit to 1,500 lbs gutted weight (gw).

A **Framework Action**, implemented in January 2018, modified the rebuilding plan for greater amberjack and the recreational closed season.

The Council approved a **Framework Action** at the October 2017 meeting that would modify the recreational fishing year and modify the recreational closed season. This action is under review by the Secretary.

Recreational Gray Triggerfish Management

A complete description of the management can be found in Reef Fish Amendment 46 (GMFMC 2017b), and is incorporated here by reference. Reef Fish Amendment 30A (GMFMC 2008a) established a stock rebuilding plan beginning in 2008 as required by the Magnuson-Stevens Act. Commercial and recreational ACTs, ACLs, and AMs were also established in Amendment 30A, along with the 21% commercial and 79% recreational sector allocation. For the recreational sector, a post-season AM was established whereby if the ACL for a single year, or the 3-year running average of recreational landings, resulted in the ACL being exceeded, then the length of the fishing season would be shortened the next year based on the amount by which the ACT was exceeded.

An **interim rule**, implemented in 2012 reduced the recreational ACL to 241,200 lbs www and the recreational ACT to 217,100 lbs www. The **interim rule** also established in-season closure authority for the recreational sector based on the ACT. Therefore, if the recreational gray triggerfish ACT is reached or projected to be reached within a fishing year, NMFS can close the recreational sector from harvesting gray triggerfish for the rest of the year (78 FR 27084). The **interim rule** reduced fishing levels until long-term management measures were implemented.

Amendment 37 (GMFMC 2012a), implemented in 2013, adjusted the commercial and recreational ACLs and ACTs, established a two-fish recreational daily bag limit, established an annual fishing season closure from June 1 through July 31 for the commercial and recreational sectors, and revised the in-season AM for the recreational sector by eliminating the 3-year running average ACL. In addition, an overage adjustment for the recreational sector was added.

In November 2016, NMFS published a **temporary rule**⁵ for the recreational sector's harvest of gray triggerfish in 2017 that determined the recreational season would not reopen on January 1, 2017, and would remain closed the entire 2017 fishing year. This determination was based on the 2016 adjusted recreational ACL and ACT for gray triggerfish being exceeded by 215% and 245%, respectively. The gray triggerfish stock is overfished and this closure was necessary to protect the resource.

Amendment 46, implemented in January 2018, modified the gray triggerfish rebuilding plan, increased the recreational closed season, reduced the bag limit to one fish per person, increased the recreational minimum size limit to 16 inches FL, and increased the commercial trip limit to 16 fish.

Recreational Gag Management

Federal management of gag began in November 1984 with the implementation of the Reef Fish Fishery Management Plan and its associated EIS. **Amendment 1**, implemented in February 1990, established several reef fish management measures including a 20-inch TL minimum size limit on gag.

⁵http://sero.nmfs.noaa.gov/sustainable_fisheries/gulf_fisheries/reef_fish/2017/am46_gray_trigger_documents/pdfs/gulf_reef_trigger_closure_frnotice.pdf

A **regulatory amendment**, implemented in June 2000, increased the recreational size limit for gag from 20 to 22 inches TL and established two marine reserves (Steamboat Lumps and Madison-Swanson) that are closed year-round to fishing for all species under the Council's jurisdiction. An additional action to further increase the recreational minimum size limit for gag and black grouper by 1 inch per year until it reached 24 inches TL was disapproved by NMFS.

In August 2009, the Council was notified by NMFS that the Gulf gag stock was both overfished and undergoing overfishing based on the results of a 2009 update stock assessment. The remaining summary focuses on the history of gag management since the stock was declared overfished. For a full history of grouper management, refer to Amendment 30B, History of Management Activities Affecting Grouper Harvest (GMFMC 2008b).

Amendment 30B (GMFMC 2008b), implemented in May 2009, established ACLs and AMs for gag and red grouper; managed shallow-water grouper to achieve OY and improve the effectiveness of federal management measures; defined the gag MSST and OY; set interim allocations of gag and red grouper between recreational and commercial fisheries; made adjustments to the gag and red grouper ACLs to reflect the current status of these stocks; established ACLs and AMs for the commercial and recreational gag harvest, and commercial aggregate shallow-water grouper harvest; adjusted recreational grouper bag limits and seasons; adjusted commercial grouper quotas; eliminated the end date for the Madison-Swanson and Steamboat Lumps marine reserves; and required that vessels with federal commercial or charter reef fish permits comply with the more restrictive of state or federal reef fish regulations when fishing in state waters.

An **Interim Rule** published December 1, 2010. While management measures for the gag rebuilding plan were being developed through Amendment 32, the **Interim Rule** reduced gag landings consistent with ending overfishing; implemented conservative management measures while a rerun of the update stock assessment was being completed; and temporarily halted the recreational harvest of gag until recreational fishing management measures being developed in Amendment 32 could be implemented to allow harvest at the appropriate levels.

The gag 2009 update stock assessment indicated that the gag commercial quota implemented in the December 1, 2010 interim rule could be increased and that a longer recreational season could be implemented. In response, the Council requested an interim rule while they continued to work on long-term measures including a gag rebuilding plan in Amendment 32. The **Interim Rule**, effective from June 1, 2011 through November 27, 2011, was extended for another 186 days or until Amendment 32 was implemented. The interim rule set a two-month recreational gag fishing season from September 16 through November 15.

Amendment 32, implemented in March 2012, set the commercial and recreational gag ACLs and ACTs for 2012 through 2015 and beyond; set the gag recreational season from July 1 through October 31 (the bag limit remained two gag in the four-grouper aggregate bag limit); and added an overage adjustment and in-season closure to the gag and red grouper recreational AMs to avoid exceeding the ACL.

Amendment 38, implemented in March 2013, revised the post-season recreational AM that reduces the length of the recreational season for all shallow-water grouper in the year following a year in which the ACL for gag or red grouper is exceeded. The modified AM reduces the recreational season of only the species for which the ACL was exceeded.

Recreational Red Grouper Management

Similar to the management of gag, the federal management of red grouper began in November 1984 with the implementation of the Reef Fish FMP and its associated EIS.

Amendment 1, implemented in 1990, set objectives to stabilize long-term population levels of all reef fish species by establishing a survival rate of biomass into the stock of spawning age fish to achieve at least 20% spawning stock biomass per recruit by January 1, 2000. Among the red grouper management measures implemented included setting a 20-inch TL minimum size limit on red grouper, and a five-grouper recreational daily bag limit.

Secretarial Amendment 1, implemented in July 2004, established a rebuilding plan, a 5.31 mp gutted weight (gw) commercial quota, and a 1.25 mp gw recreational target catch level for red grouper. The recreational bag limit for red grouper was reduced to two fish per person per day.

An **interim rule**, published July 25, 2005, proposed for the period August 9, 2005 through January 23, 2006, a temporary reduction in the red grouper recreational bag limit from two to one fish per person per day, in the aggregate grouper bag limit from five to three grouper per day, and a closure of the recreational sector, from November - December 2005, for all grouper species. These measures were proposed in response to an overharvest of the recreational allocation of red grouper under the Secretarial Amendment 1 red grouper rebuilding plan. The closed season was applied to all grouper to prevent effort shifting from red grouper to other grouper species and an increased bycatch mortality of incidentally caught red grouper. However, the rule was challenged by organizations representing recreational fishing interests. On October 31, 2005, a U.S. District Court judge ruled that an interim rule to end overfishing can only be applied to the species that is undergoing overfishing. Consequently, the reduction in the aggregate grouper bag limit and the application of the closed season to all grouper were overturned. The reduction in the red grouper bag limit to one per person and the November-December 2005, recreational closed season on red grouper only were allowed to proceed. The approved measures were subsequently extended through July 22, 2006, by a temporary rule extension published January 19, 2006.

A **regulatory amendment** (GMFMC 2005), implemented in July 2006, established a red grouper recreational bag limit of one fish per person per day as part of the five grouper per person aggregate bag limit, and prohibited for-hire vessel captains and crews from retaining bag limits of any grouper while under charter. An additional provision established a recreational closed season for red grouper, gag, and black grouper from February 15 to March 15 each year (matching a previously established commercial closed season) beginning with the 2007 season.

Amendment 27 was implemented in February 2008 and its reef fish bycatch reduction measures became effective June 1, 2008. These measures required the use of non-stainless steel circle

hooks when using natural baits to fish for Gulf reef fish and required the use of venting tools and dehooking devices when participating in the commercial or recreational reef fish fisheries.

Amendment 30B, implemented in May 2009, proposed to end overfishing of gag, revise red grouper management measures as a result of changes in the stock condition, establish ACLs and AMs for gag and red grouper, manage shallow-water grouper to achieve optimum yield, and improve the effectiveness of federal management measures. The amendment: 1) defined the gag minimum stock size threshold and OY; 2) set interim allocations of gag and red grouper between recreational and commercial fisheries; 3) made adjustments to the gag and red grouper TACs to reflect the current status of these stocks; 4) established ACLs and AMs for the commercial and recreational red grouper fisheries 5) adjusted recreational grouper bag limits and seasons; 6) eliminated the end date for the Madison-Swanson and Steamboat Lumps marine reserves; and 7) required that vessels with a federal charter vessel/headboat permit for Gulf reef fish must comply with the more restrictive of state or federal reef fish regulations when fishing in state waters.

A **regulatory amendment**, implemented in January 2011, reduced the total allowable catch for red grouper from 7.57 mp gw to 5.68 mp gw, based on the OY projection from a March 2010 rerun of the projections from the 2009 red grouper update assessment. Although the stock was found to be neither overfished nor undergoing overfishing, the update assessment found that spawning stock biomass levels had decreased since 2005, apparently due to an episodic mortality event in 2005 which appeared to be related to an extensive red tide that year. Based on the 76:34 commercial and recreational allocation of red grouper, the commercial quota was reduced from 5.75 to 4.32 mp gw, and the recreational allocation was reduced from 1.82 to 1.36 mp gw. No changes were made to the recreational fishing regulations as the recreational landings were already below the adjusted allocation in recent years.

An August 2011 **regulatory amendment** increased the 2011 red grouper TAC to 6.88 mp gw with subsequent increases each year from 2012 to 2015. These catch limits were subsequently replaced by a constant catch ACL and ACT under Amendment 32, which was being developed concurrently. The regulatory amendment also increased the red grouper bag limit to four fish per person.

Amendment 32, implemented in March 2012, set the constant catch red grouper commercial ACL at 6.03 mp and the red grouper recreational ACL at 1.90 mp. It also added an overage adjustment and in-season measures to the gag and red grouper recreational AMs to avoid exceeding the ACL, and an AM for the red grouper bag limit that would reduce the red grouper bag limit from four to three red grouper, and then to two red grouper, if the red grouper recreational ACL is exceeded.

A December 2012 **framework action** established the 2013 gag recreational fishing season to open on July 1 and remain open until the recreational annual catch target is projected to be taken. The framework action also eliminated the February 1 through March 31 recreational shallowwater grouper closed season shoreward of 20 fathoms (except for gag). However, the closed season remains in effect beyond 20 fathoms to protect spawning aggregations of gag and other species that spawn offshore during that time.

Amendment 38, implemented in March 2013, revised the post-season recreational AM that reduces the length of the recreational season for all shallow-water grouper in the year following a year in which the ACL for gag or red grouper is exceeded. The modified accountability measure reduces the recreational season of only the species for which the ACL was exceeded.

A **framework action**, implemented in May 2015, reduced the bag limit from four fish per person per day to two fish per person per day and eliminated the bag limit reduction AM.

A **framework action**, implemented in May 2016, increased the minimum size limit for recreationally caught gag and black grouper to 24 inches TL, and changed the gag recreational fishing season to June 1 through December 31, unless closed sooner due to the recreational ACL being reached.

CHAPTER 2. MANAGEMENT ALTERNATIVES

In this amendment, the Gulf of Mexico Fishery Management Council (Council) must first determine the type of management approach deemed appropriate to addressing challenges for landings history vessels (LHV). In the second step, the Council has to focus on the design characteristics corresponding to the selected management approach. Based on this two-step decision making process, the first action includes alternative management approaches. The remaining actions include design elements and provisions corresponding to fishing quota programs. Therefore, all actions beginning with Action 2 are only valid if Alternative 2 or 3 is chosen in Action 1 and, the "No Action" alternatives in those actions assume a fishing quota program will be developed and are worded accordingly.

2.1 Action 1. Type of Recreational Management Program for Landings History Vessels

Alternative 1. No Action. For landings history vessels, continue to manage the reef fish species chosen in Action 2 using current recreational seasons, size limits, and bag limits.

Alternative 2. For landings history vessels, manage the reef fish species chosen in Action 2 by establishing an Individual Fishing Quota (IFQ) Program.

Alternative 3. For landings history vessels, manage the reef species chosen in Action 2 by establishing a Permit Fishing Quota (PFQ) Program.

Discussion

Alternative 1 would continue to rely on bag limits, size limits, and fishing seasons to manage LHV. If the Council elects to continue to manage reef fish effort and harvests for LHV using traditional approaches, the range of management measures would be fairly limited and changes to these management measures could be implemented through the framework process. Traditional management instruments, commonly referred to as command and control management, would include adjustments to the bag limits and changes to the structure of fishing seasons. None of the command and control approaches were favored by a majority of the Ad Hoc Reef Fish Headboat Advisory Panel (Headboat AP) members.

At their May 2015 meeting, the Headboat AP made a motion recommending the Council develop an allocation-based program (**Alternatives 2** and **3**) using reported landings from the Southeast Region Headboat Survey (SRHS). In a subsequent meeting held in May 2016, the Headboat AP further indicated its preference for the implementation of an IFQ program. In an allocation-based program, the quota is divided among participants, who can then choose when to use that allocation. In the case of an LHV program, each participant would have allocation to account for fish harvested by the passengers on each trip. Timely reporting is a key element of allocation-based programs; as allocation is used, it must be subtracted from the annual allocation for the participant. When a participant has used all of their allocation, they must stop fishing or obtain more allocation (if allowed by the program).

An IFQ program (**Alternative 2**) involves shares and allocation held by permit holders with landings history vessels, in this case. Permit holders may be businesses or one or more individuals jointly holding a permit. Shares would be distributed to each permit holder based on the landings history associated with their permit in the SRHS and National Marine Fisheries Service (NMFS) databases. Those shares would represent a percentage of the LHV quota for the program. After the initial distribution, shares would be associated with the permit holder but not the

Definitions

LHV Quota – pounds or numbers of fish allowed to be landed by all vessels in the LHV program developed in this amendment

Share – a set percentage of the quota held by an IFQ or PFQ participant

Allocation – pounds or numbers of fish each LHV is allowed to land each year

permit itself. Therefore, shares could be transferred separately from the permit, in accordance with any restrictions in the program. Each year, NMFS would distribute allocation to participants holding shares; individual allocation would be determined by multiplying the share percentage by the LHV quota.

A PFQ program (**Alternative 3**) involves shares and allocation associated with a permit, in this case the federal Gulf of Mexico (Gulf) reef fish charter/headboat permit that is associated with a vessel in the SRHS. Those shares would represent a percentage of the LHV quota and allocation would be distributed to the permit holder at the start of the year. Shares would not be independently transferrable. But if the permit transferred, the shares would transfer with the permit and now be associated with the new shareholder.

The two programs differ in terms of how the shares and/or allocation would be distributed, as well as other program details. These types of programs could provide LHV with the flexibility to operate when customers are most abundant, which may differ by region.

NMFS Southeast Regional Office (SERO) currently manages two commercial IFQ programs: the red snapper IFQ and the grouper–tilefish IFQ programs. The NMFS Southeast Regional Office also currently maintains and supports the commercial Bluefin Tuna Individual Bluefin Quota program, which is a type of PFQ. The Headboat Collaborative (HBC) pilot program (2014-2015) was also managed through the same online system. The structure of an IFQ or PFQ program for LHV could also be incorporated into the current online system. Participants would hold shares and allocation in accounts within the system and report landings via the system. Distribution, usage, and transfers would all be tracked by NMFS.

An IFQ or PFQ program would act as an accountability measure and replace the need for inseason closures or post-season restrictions. In the commercial IFQ programs, participants who hold shares are allowed to land up to 10% more of the amount of allocation left in their account on the last trip of the season. This allowance accounts for the inability to precisely weigh catch and must be paid back from the following year's allocation. If allocation for the LHV program is in numbers of fish, this type of overage allowance may not be needed.

Allocation-based programs, as with other management changes, can affect fishing behavior in complex and unpredictable ways. These changes can affect the utility of the fishery dependent information used in stock assessments. For example, the commercial IFQ program has resulted in the truncation of the commercial indices of abundance in several assessments. The change in behavior of fishing due to the IFQ system requires a different index of abundance due to changes in effort. Effort can change based on differences in allocation and how each vessel uses their allocation to plan fishing trips. To date in the Gulf, for any species in an IFQ program, indices of abundance have not been calculated since the start of the programs due to these problems. These issues also affect discard rates, although an effort has been made to incorporate those changes in the stock assessment. Changes in catch rates coincident with the introduction of the commercial IFQs cannot be easily decoupled from possible changes in abundance. The problem is greatest at the beginning of a new program, before many years are available under the new management regime.

Compliance and Monitoring

The ability to enforce and monitor program compliance is a key component of these programs. Some conditions that would aid in this include trip declarations, pre-landing notifications, and restricted landing locations. In the HBC pilot program, e-mail notifications of hail-outs and hailins allowed enforcement and biological collection agents (port agents) to prioritize sampling. Trip declarations made before leaving the dock (hail-outs) would include vessel name, return destination, and estimated date/time of return. These declarations would aid enforcement officers/agents and port agents in scheduling their activities for the day so they could meet a vessel when it returns to the dock. For the commercial IFQ system, declarations are made through the vessel monitoring system (VMS) unit or a call service center, and include vessel identifiers, type of fishing trip (e.g., Gulf, South Atlantic, highly migratory species), fishing activity (e.g., reef fish, mackerel, research trip), and permit type (i.e., commercial, charter or recreational). Trip declarations would need to be real-time for the LHV program and contain a method to distribute the information to enforcement and port agents. The commercial IFQ system does not currently distribute hail-out information. The Council has approved an electronic reporting system for for-hire vessels that includes a hail-out requirement; NMFS is working to implement the system in the future.

Pre-landing notifications (hail-ins) would aid in validation and auditing programs. Under the commercial IFQ program, notifications need to be submitted 3 to 24 hours in advance of landing and can be submitted through three different methods (online, VMS, call service center). For the HBC pilot program, pre-landing notifications were submitted 1 hour in advance of landing through VMS. The pre-landing notifications for the LHV program would contain information on the vessel, landing location, date and time of landing, and estimated pounds or numbers of IFQ/PFQ species being landed by species. The commercial IFQ system distributes the information via email to the agents listed within the region of landing. Methods that would have near real-time distribution would include a direct entry in the IFQ online system, entry through a VMS unit, or a 24-hour call service that enters the information in the IFQ online system. In the HBC pilot program, knowing the number of fish on board allowed port agents to ensure they had sufficient supplies for biological sampling available and allowed enforcement to immediately identify a discrepancy between the actual count and the hail-in count. Many of the agents felt that the hail-out/hail-in notifications improved sampling efficiency and reporting accuracy. For a

VMS unit, the burden of the cost would be on the shareholder, while for a 24-hour call service center the burden of cost would be on NMFS. The HBC pilot program found that VMS units cost around \$6,000, with a monthly service fee of around \$60/month. Estimates for a call service center can be calculated through estimating the number of trips per year, and the amount of time per phone call.

In the commercial IFQ programs and the HBC pilot program, landing sites must be pre-approved by NMFS Office of Law Enforcement. This is to ensure that the sites are accessible to enforcement officers by land and water. Landing locations for LHV are more likely to be publicly accessible because the vessel must meet the customers and return to the same location.

2.2 Action 2. Species to Include in the LHV Management Program

Alternative 1: No Action. Do not define reef fish species to include in the management program.

Preferred Alternative 2: Include the following species in the management program:

Preferred Option 2a: Red snapper Preferred Option 2b: Greater amberjack Preferred Option 2c: Gray triggerfish

Preferred Option 2d: Gag

Preferred Option 2e: Red grouper

Discussion

For each reef fish species included in this action, the development of management measures specific to LHV would initially require the allocation of a portion of the recreational annual catch limit (ACL) to LHV. Only reef fish species that already have recreational ACLs are considered for inclusion in this amendment. Within the reef fish complex managed by the Council, the six species with separate recreational and commercial ACLs are: red snapper, gag, red grouper, greater amberjack, gray triggerfish, and black grouper.

The Headboat AP recommended the inclusion of these six major reef fish species. However, black grouper recreational landings are typically very low and a very limited number of black grouper are landed by LHV. Based on the negligible black grouper recreational landings, reef fish species considered for inclusion in this amendment exclude black grouper and are limited to the five major reef fish species with recreational ACLs.

Recreational fishing for most of these species has been limited in recent years, which has prompted the Council to search for new management regimes to increase fishing opportunities. Tables 2.2.1 to 2.2.5 show landings by LHV of each of the species and the proportion of those landings versus landings for the recreational sector as a whole. For LHV, red snapper has the highest landings by far in both numbers and pounds.

Table 2.2.1. Landings (in pounds) of red snapper by LHV from 2011 through 2015 by homeport region, plus percentage of the total recreational landings. Note: Some regions have been

combined because of confidentiality requirements

Year	SWFL	NWFL	AL	MS/LA	TX	Total	Percent
2011	14,362	218,833	80,867	29,578	286,928	630,568	15%
2012	17,955	187,878	71,483	27,093	419,675	724,084	14%
2013	12,493	132,300	56,378	22,618	221,491	445,280	5%
2014	10,289	107,534	67,338	12,436	184,696	382,293	10%
2015	19,003	102,632	94,718	18,188	333,733	568,273	10%

Source: SRHS database, MRIP, LA Creel, TX HBS.

Table 2.2.2. Landings (in pounds) of gray triggerfish by LHV from 2011 through 2015 by homeport region, plus percentage of the total recreational landings. Note: Some regions have been combined because of confidentiality requirements.

Year	SWFL	NWFL	AL/MS/LA	TX	Total	Percent
2011	1,401	34,832	11,915	2,303	50,449	11%
2012	997	13,570	3,018	1,121	18,706	7%
2013	796	21,443	3,421	1,453	27,112	6%
2014	229	7,002	932	530	8,693	4%
2015	221	2,344	731	161	3,457	6%

Source: SRHS database, MRFSS, LA Creel, TX HBS.

Table 2.2.3. Landings (in pounds) of greater amberjack by LHV from 2011 through 2015 by homeport region, plus percentage of the total recreational landings. Note: Some regions have been combined because of confidentiality requirements.

Year	FL	Other Gulf	Total	Percent
2011	31,915	30,921	62,836	6%
2012	61,989	37,692	99,681	7%
2013	34,961	38,286	73,247	5%
2014	21,936	24,500	46,435	5%
2015	23,251	35,249	58,500	6%

Source: SRHS database, MRFSS, LA Creel, TX HBS; all MRFSS landings for greater amberjack from Monroe County are assigned to the South Atlantic.

Table 2.2.4. Landings (in pounds) of gag by LHV from 2011 through 2015 by homeport region, plus percentage of the total recreational landings. Note: Some regions have been combined because of confidentiality requirements.

Year	SWFL	NWFL	AL/MS/LA	TX	Total	Percent
2011	47,688	1,948	256	344	50,236	7%
2012	34,707	9,808	408	595	45,519	4%
2013	32,083	2,560	22	431	35,096	2%
2014	40,023	1,598	93	183	41,898	5%
2015	22,761	2,920	194	184	26,059	3%

Source: SRHS database, MRFSS, LA Creel, TX HBS; all MRFSS landings for gag from Monroe County are assigned to the South Atlantic.

Table 2.2.5. Landings (in pounds) of red grouper by LHV from 2011 through 2015 by homeport region, plus percentage of the total recreational landings. Note: Some regions have been combined because of confidentiality requirements.

Year	SWFL	NWFL	Other Gulf	Total	Percent
2011	28,836	9,163	459	38,459	6%
2012	74,211	12,731	382	87,324	5%
2013	71,960	8,950	344	81,255	3%
2014	41,145	5,953	175	47,272	3%
2015	48,390	4,318	332	53,040	3%

Source: SRHS database, MRFSS, LA Creel, TX HBS.

Some of the proposed species are overfished and/or undergoing overfishing (Table 2.2.6). Changes to management for these species could extend seasons and increase fishing opportunities while protecting the stock. **Alternative 1** would not specify reef fish species to include in the management program for LHV. Therefore, **Alternative 1** would not allow further development of management measures for LHV.

Table 2.2.6. Overfished and overfishing status of Gulf stocks considered for Amendment 42.

Smeales	Status of the Gulf Stock			
Species	Overfished	Overfishing		
Red Snapper	N	N		
Greater Amberjack	Y	Y		
Gray Triggerfish	N	N		
Gag	N	N		
Red Grouper	N	N		

Preferred Alternative 2 provides species-specific options that would determine the scope of the program. The selection of a single option would result in a single-species program whereas the selection of more than one preferred option would result in a multi-species management program. The combined selection of **Preferred Options a** (red snapper) and **d** (gag) would mirror the species included in the HBC pilot program exempted fishing permit that expired at the end of 2015. These species are generally the most desirable among headboat passengers. Red snapper is not undergoing overfishing, and as of 2018, is not overfished but still under a rebuilding plan. The recreational sector experienced quota overages for many years until recently, and shorter seasons recently, as well. Although the recreational quota has increased in recent years, the season length has decreased, in part because the average size of the fish harvested has increased (i.e., it takes fewer fish to fill the quota). Gag recreational landings have been below the ACL since 2012. Although a stock assessment for gag, completed in 2014 (SEDAR 33 2014), indicated the gag stock was no longer overfished or undergoing overfishing, anecdotal information from fishermen indicate that the stock may not be in as good shape as suggested by the assessment. Low landings may be indicative of a reduced stock. New management for gag could help prevent overfishing from recurring.

Greater amberjack (**Preferred Option b**) and gray triggerfish (**Preferred Option c**) are both under rebuilding plans, but gray triggerfish are no longer overfished. Greater amberjack

recreational landings exceeded the ACL in 2013, and the season closed early in 2014 through 2017. The gray triggerfish season has closed before the end of the year since 2012, and did not open at all in 2017. Red grouper (**Preferred Option e**) is considered neither overfished nor undergoing overfishing. However, the red grouper ACL was exceeded in 2013 and the season closed in 2014; the Council reduced the bag limit for 2015 to try to extend the season, but it still closed early. In 2016, the quota was increased and the season remained open for the entire year with a two-fish bag limit in 2016 and 2017.

The establishment of a separate management program for LHV harvesting red snapper (**Preferred Option a**) would not exempt the program from section 407(d) of the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act) which requires that red snapper recreational fishing be halted once the total recreational quota is caught. Some participants in the selected program may have to forgo remaining annual allocation of red snapper and lose fishing opportunities after the red snapper recreational ACL is caught. During the HBC pilot program, the total recreational quota was not reached for red snapper and HBC vessels were able to fish throughout the year. This provision does not apply to other species that might be included in the program.

2.3 Action 3. Participation at the Onset of the LHV Program

Alternative 1. No Action. Any vessel that meets the control date, has a valid or renewable federal reef fish for-hire permit, and is still participating in the SRHS, must participate in the program selected in Action 1.

Alternative 2. Any vessel that meets the control date, has a federal reef fish for-hire permit, *and is still participating in the SRHS*, may choose to opt out of the LHV program at the onset of the program. Vessels choosing not to participate must notify NMFS by October 1 of the year before implementation of the program. Vessels not in the program will be managed under the federal recreational regulations for species selected in Action 2.

Alternative 3. Any vessel that meets the control date and has a federal reef fish for-hire permit, *regardless of SRHS participation*, may choose to opt out of the program selected in Action 1 at the onset of the program. Vessels choosing not to participate must notify NMFS by October 1 of the year before implementation of the program. Vessels not in the program will be managed under the federal recreational regulations for species selected in Action 2.

Discussion

This action allows the Council to choose if the IFQ or PFQ program would be mandatory or voluntary. All the commercial IFQ programs currently in place in the southeast region are mandatory; anyone holding a commercial vessel permit for the species covered must participate in the program to fish for those species. **Alternative 1** would make the LHV program mandatory as well. Any vessel eligible to participate in the LHV program as of December 31, 2015, would have to maintain an IFQ/PFQ account with allocation to possess and land any of the species chosen for the program (Action 2).

Alternatives 2 and 3 would allow vessels to opt out of the program chosen in Action 1, at the onset of the program. Alternatives 2 and 3 would allow vessels that meet the control date still participating in the SRHS and any vessel that meets the control date to opt out, respectively. Each vessel owner would have until October 1 of the year before implementation to inform NMFS of his/her desire to not participate in the program. This would allow time for NMFS to calculate the LHV quota and IFQ/PFQ shares. Any LHV owner that does not contact NMFS by October 1 would be included in the program and would need allocation to fish for and land any of the species included in Action 2. The landings associated with any vessel opting out of the program may be subtracted from the LHV allocation set in Action 5. These landings would be calculated according to the formula chosen for initial distribution in Action 7.

The option not to participate would only be allowed at the onset of the program because that is when shares are distributed. Vessels not in the program may be able to join later, depending on transferability options chosen for endorsements/permits, shares, and allocation (Actions 4, 8, and 10) and options for new entrants in Action 15. Vessels opting out of the program would follow the applicable recreational regulations for charter vessels and private anglers. In the case of red snapper, if management of charter vessels is maintained separately from private anglers⁶, vessels opting out of the LHV program would be managed with the charter vessels, including any management developed in Amendment 41.

Vessels could not be allowed to opt in and out every year with either an IFQ or PFQ program. Once shares are determined at implementation of the program, those shares by definition should not change, except as a result of transfers, if allowed. Each share represents a percentage of the quota, and all shares must add up to 100%. If vessels opt in and out every year, the shares would need to be recalculated each year, and would become meaningless. An allocation-based program could be developed without shares, but that type of program is not an alternative in Action 1 of this amendment.

Allowing vessels to opt out complicates any analysis of the impacts of this action because the number of vessels opting out of the program cannot be predicted. Also, the true LHV ACL could not be known before implementation of the IFQ or PFQ program. Under **Action 5**, **Alternative 6**, NMFS would have to calculate the share that each opting-out vessel would have received under the program, subtract the percent of that share from the LHV ACL, and include that percent in the remaining recreational ACL. Only after the deadline for opting out has passed could NMFS undergo this calculation.

⁶ The Council recently voted to maintain separate red snapper quotas for private angler and for-hire components through 2022.

2.4 Action 4. Landings History Vessel Endorsement or Permit

Alternative 1. No Action. Landings History Vessel (LHV) program participants are required to have a Gulf reef fish for-hire permit.

Preferred Alternative 2. Establish an endorsement for LHV. LHV program participants are required to have an LHV endorsement to their Gulf reef fish for-hire permit. LHV endorsements will be issued to qualifying LHV program participants at the time of implementation of this action. With a PFQ, the shares would be attached to the LHV endorsement. An LHV endorsement holder may only fish off the LHV quota for the species selected in Action 2 throughout the year. LHV endorsements are transferrable to any vessel with a Gulf reef fish for-hire permit.

Alternative 3. Establish a Gulf reef fish LHV permit. LHV program participants are required to have a Gulf reef fish LHV permit. Gulf reef fish for-hire permits held by qualifying LHV program participants at the time of implementation of this action will be converted to Gulf reef fish LHV permits. A Gulf reef fish LHV permit holder may only fish off the LHV quota for the species selected in Action 2 throughout the year. Gulf reef fish LHV permits are fully transferrable.

Discussion

Currently, one federal permit covers charter vessels and headboats in the reef fish fishery. These permits do not distinguish between the two types of vessels. **Alternative 1** would continue the use of the single permit and rely on the definition in this amendment to distinguish LHV. This would be the simplest alternative to implement, but may create difficulties for enforcement in distinguishing which regulations a specific vessel should be following.

An endorsement or permit could help distinguish which vessels are in the LHV program. This would help with administration and enforcement. However, if the Council chooses to establish an endorsement or permit, they should consider the interaction between the LHV program in this amendment and the charter vessel program being developed in Amendment 41, so that there are not two endorsements available for the same federal permit.

Preferred Alternative 2 would establish an LHV endorsement to the Gulf reef fish for-hire permit for only those vessels that are in the LHV program developed through this amendment. This endorsement would help clarify who is eligible to participate in the LHV program. An endorsement would help with monitoring and enforcement of an IFQ or PFQ as only those vessels with the endorsement could fish off the LHV quota and not be subject to seasons and bag limits. A vessel owner would be able to transfer his endorsement but retain his permit. Endorsements may add an additional level of complexity to the permit process and the IFQ/PFQ system. Managing both permits and endorsements requires consideration of the interactions between them, including what the implications are if the permit expires or terminates but the endorsement does not. These issues could create an increasingly complex and unwieldy system, which would not only be onerous for NMFS to manage, but a likely source of confusion and frustration for constituents. The complexity increases if Amendment 41 establishes

endorsements for charter vessels; the same federal permit would have two separate and distinct endorsements, which would further complicate permit transfer rules.

The transferability of the endorsement would provide a means for vessels that opted out of the program at the onset (Action 3) to change their mind and become participants. It would also allow new vessels to participate, as well as charter vessels, by purchasing an endorsement (Action 15). However, currently permits are frequently transferred between vessels that participate in the SRHS and those that do not during the year. When that happens, the burden on NMFS and the permit holder would likely increase because both the endorsement and the permit it endorses will require separate administration and management. In addition, renewing an endorsement would cost an additional \$10 to the permit holder each year.

Alternative 3 would essentially split the Gulf for-hire reef fish permit into two mutually exclusive permits: one for LHV included in the program established by this amendment and one for other Gulf federally-permitted for-hire vessels. If a similar permit is established by Amendment 41, the current Gulf for-hire reef fish permit would disappear. Like **Preferred** Alternative 2, this alternative would help clarify who is eligible to participate in the LHV program. Administratively, Alternative 3 would require a more simple procedure because only the permit would be required, rather than a permit and an endorsement. However, the LHV program would only be for five species in the reef fish fishery. Therefore, the LHV permit would also need to cover other reef fish species not in the LHV program, so that each vessel would not need additional permits to harvest Gulf reef fish. The new LHV permits would be fully transferable, as are the current reef fish for-hire permits.

2.5 Action 5. Allocation of Annual Catch Limit to the Landings History Vessel Program

Alternative 1. No Action. Do not allocate a portion of the recreational ACL to the LHV Program.

Alternative 2. Allocate a portion of the recreational ACL for each species to the LHV Program based on average landings from 2011-2015, according to the Southeast Region Headboat Survey.

Option a. Use all years **Option b.** Exclude 2014

Option c. Exclude 2014 and 2015

	Option a	Option b	Option c
Red Snapper (% of for-hire*)	37.9%	30.5%	31.7%
(% of total)	8.7%	8.3%	7.9%
Greater Amberjack	5.1%	5.4%	5.9%
Gray Triggerfish	6.4%	7.0%	7.9%
Gag	4.3%	4.3%	4.4%
Red Grouper	3.6%	3.9%	4.4%

^{*}Allocation is a percentage of the for-hire quota until 2022; afterwards, it is a percentage of the total recreational quota. Note that total pounds would remain the same.

Alternative 3. Allocate a portion of the recreational ACL for each species to the LHV Program based on average landings from 2004-2015, according to the Southeast Region Headboat Survey.

Option a. Use all years **Option b.** Exclude 2010 **Option c.** Exclude 2014

Option d. Exclude 2014 and 2015

	Option a	Option b	Option c	Option d	Opt b&c	Opt b&d
Red Snapper (% of for-hire*)	31.9%	30.3%	28.7%	28.8%	26.6%	26.5%
(% of total)	10.7%	10.2%	10.8%	10.9%	10.2%	10.3%
Greater Amberjack	4.8%	4.9%	4.9%	5.0%	5.1%	5.2%
Gray Triggerfish	9.4%	9.5%	9.9%	10.5%	10.1%	10.7%
Gag	3.7%	3.6%	3.6%	3.5%	3.5%	3.4%
Red Grouper	3.3%	3.3%	3.4%	3.5%	3.4%	3.5%

^{*}Allocation is a percentage of the for-hire quota until 2022; afterwards, it is a percentage of the total recreational quota. Note that total pounds would remain the same.

Alternative 4. Allocate a portion of the recreational ACL for each species to the LHV Program based on 50% average landings from 2011-2015 and 50% average landings from 2004-2015, according to the Southeast Region Headboat Survey.

Option a. Use all years Option b. Exclude 2010 Option c. Exclude 2014

Option d. Exclude 2014 and 2015

	Option a	Option b	Option c	Option d	Opt b&c	Opt b&d
Red Snapper (% of for-hire*)	30.3%	29.5%	28.8%	27.7%	27.7%	26.5%
(% of total)	10.7%	10.5%	10.8%	10.5%	10.5%	10.2%
Greater Amberjack	5.0%	5.0%	5.2%	5.5%	5.2%	5.5%
Gray Triggerfish	7.9%	7.9%	8.5%	9.2%	8.5%	9.3%
Gag	4.0%	4.0%	4.0%	3.9%	3.9%	3.9%
Red Grouper	3.5%	3.5%	3.7%	3.9%	3.7%	4.0%

^{*}Allocation is a percentage of the for-hire quota until 2022; afterwards, it is a percentage of the total recreational quota. Note that total pounds would remain the same.

Alternative 5: For each species, allocate a portion of the recreational ACL to the LHV Program based on 50% average from 1986-2013 (2010 excluded) and 50% average landings from 2006-2013 (2010 excluded). (Preferred Alternative from Amendment 40).

Red Snapper (% of for-hire*)	31.3%		
(% of total)	16.5%		
Greater Amberjack	7.5%		
Gray Triggerfish	11.8%		
Gag	4.6%		
Red Grouper	3.6%		

^{*}Allocation is a percentage of the for-hire quota until 2022; afterwards, it is a percentage of the total recreational quota. Note that total pounds would remain the same.

Alternative 6. The landings associated with any vessels opting out of the program (Action 3) will be subtracted from the LHV allocation. These landings will be calculated according to the formula chosen for initial distribution in Action 7.

Discussion

For each reef fish species included in this management plan, a portion of the corresponding recreational ACL must be allocated to the LHV component prior to the development of management measures tailored to the specific needs of LHV. Therefore, **Alternative 1** would not allow development of an IFQ or PFQ program for LHV.

Alternatives 2-5 consider different time periods of landings to calculate the percent of the recreational ACL for each species that would be allocated to the LHV program and the time periods correspond with those under consideration in Action 3 of Amendment 41. Each species would have its own LHV quota that would be allotted to participants according to the formula determined in Action 7. Table 2.5.1 provides percentages of the recreational landings harvested by LHV since 2004 for greater amberjack, gray triggerfish, gag, and red grouper.

Table 2.5.1. Landings by LHV as a percentage of total landings.

Year	Greater Amberjack	Gray Triggerfish	Gag Grouper	Red Grouper
1986	12%	8%	9%	4.7%
1987	7%	5%	7%	6.5%
1988	7%	6%	3%	3.7%
1989	3%	11%	8%	4.6%
1990	8%	7%	10%	7.2%
1991	3%	7%	4%	3.0%
1992	10%	12%	5%	1.6%
1993	9%	13%	8%	3.1%
1994	11%	16%	7%	2.4%
1995	16%	14%	4%	4.1%
1996	9%	21%	4%	7.9%
1997	10%	16%	3%	3.7%
1998	13%	17%	6%	2.7%
1999	8%	15%	4%	3.5%
2000	10%	13%	4%	1.9%
2001	6%	15%	3%	1.9%
2002	7%	13%	2%	1.2%
2003	7%	13%	3%	2.5%
2004	4%	11%	3%	1.7%
2005	4%	14%	3%	5.1%
2006	4%	13%	2%	1.9%
2007	5%	15%	3%	2.3%
2008	4%	12%	2%	4.2%
2009	7%	9%	4%	3.0%
2010	4%	9%	4%	3.2%
2011	6%	11%	6%	5.7%
2012	7%	7%	4%	4.6%
2013	4%	6%	2%	2.9%
2014*	4%	4%	4%	2.5%
2015*	4%	4%	4%	2.5%

Source: SRHS, MRIP, MRFSS, LA Creel, TX Headboat Survey

*2014 and 2015 include LA Creel data.

Red snapper is unique among reef fish in that it is the only species with a recreational ACL that has been further divided into private angling and for-hire component ACLs. Because LHV are part of the for-hire component, the allocation to the LHV program would come from the for-hire ACL, and the percentage of the for-hire landings attributed to LHV would be used to determine the allocation of the for-hire ACL between charter and headboats (Table 2.5.2). However, the separate red snapper component quotas are scheduled to sunset after 2022; i.e., the ACL would no longer be divided into private angling and for-hire ACLs. Unless the sunset provision is removed, the LHV ACL would be subtracted from the total recreational ACL after the sunset, as for the other species. Table 2.5.2 provides percentages of the for-hire and total recreational landings for red snapper harvested by LHV. While separate components are in place, the LHV ACL would be allocated from the for-hire ACL; if the separate component ACLs end after 2022, the LHV ACL would be allocated from the total recreational ACL.

Table 2.5.2. Percentage of the red snapper for-hire and total recreational landings harvested by LHV.

Year	% of For-Hire Landings	% of Recreational Landings
1986	16.5%	11.8%
1987	30.0%	19.8%
1988	37.3%	19.6%
1989	56.5%	33.6%
1990	38.7%	23.4%
1991	23.8%	16.7%
1992	43.6%	20.9%
1993	33.9%	19.7%
1994	42.7%	25.3%
1995	42.8%	25.1%
1996	40.1%	26.6%
1997	33.3%	19.5%
1998	33.8%	23.3%
1999	31.2%	14.3%
2000	29.4%	16.2%
2001	23.9%	10.9%
2002	23.7%	12.6%
2003	25.5%	13.0%
2004	21.3%	10.7%
2005	21.1%	11.3%
2006	23.6%	13.9%
2007	18.3%	8.4%
2008	23.2%	10.1%
2009	36.1%	14.4%
2010	49.8%	16.2%
2011	34.2%	9.4%
2012	32.3%	9.6%
2013	28.6%	4.6%
2014*	67.4%	10.0%
2015*	26.9%	9.7%

Source: SRHS, MRIP, MRFSS, LA Creel, TX Headboat Survey. 2014 and 2015 include LA Creel data, which has not been calibrated to MRIP data.

Alternative 2 would use only the most recent five years of landings. Because some vessels move in and out of the survey, the recent years would capture landings by most of the vessels currently in the program. Of the 68 vessels selected to participate in the SRHS for 2016, 60 had landings every year during 2011-2015; all but one had at least one year of landings during that time period.

Alternative 3 would use a 12-year time period, which includes all years with landings by vessel from SRHS. Although allocation to the LHV program is based on landings for the fishery component as a whole, if the number of vessels per year varied, the average could be skewed.

Table 2.5.3 shows the number of vessels with landings in the SRHS each year. With the exception of 2006, the total number of vessels was relatively stable, although these might not be the same vessels each year.

Alternative 4 would calculate the percent of the recreational ACL to allocate to the LHV using 50% of landings from the recent time period (**Alternative 2**) and 50% of landings from the longer time period (**Alternative 3**). This would give a greater weight to the recent time period (because it is included in both time periods), but still include the longer time period.

The options under **Alternatives 2-4** allow the Council to choose certain years to exclude from the calculation of allocation for LHV. **Option a** would use all years in the time period. This may be the appropriate choice if the conditions in any year did not differentially affect headboats versus other recreational fishing. **Option b** of **Alternatives 3-4** would exclude 2010, when the Deepwater Horizon MC 252 oil spill affected fishing in the Gulf. **Alternatives 2-4** include options to exclude 2014 as well as 2014-2015. Some headboats operated under an exempted fishing permit in 2014-2015, which affected the relative landings of headboats with other components of the recreational fishing sector, and therefore would affect this division of quota between the two components. See the "Data Issues" section below for more details.

Table 2.5.3. Number of vessels in the SRHS with landings, 2004-2015.

Year	Number of Vessels
2004	64
2005	66
2006	59
2007	68
2008	67
2009	66
2010	69
2011	69
2012	68
2013	68
2014	68
2015	68

Source: NMFS SRHS Database 03/09/18

To apportion the for-hire quotas, **Alternative 5** would use the same time period chosen by the Council in Amendment 40, which established the separation of the for-hire and private angler components of the red snapper recreational quota. As discussed in previous sections, reef fish landings from LHV have been documented by the SRHS since 1986; however, landings before 2004 were not recorded by vessel. Without the number of vessels participating in the SRHS during earlier years, we cannot know how much the level of fishing changed. **Alternative 5** also only uses landings through 2013 and, therefore, ignores landings from the most recent two years. However, the Council could change the time periods in the alternative to extend to 2015.

Alternative 6 addresses the possibility of some eligible vessels opting out of the LHV program, as outlined in Action 3. This alternative would calculate the share that each vessel would have

received under the program, subtract the percent of that share from the LHV allocation, and include that percent in the remaining recreational ACL. This alternative complicates any analysis of the impacts of this action because the number of vessels opting out of the program cannot be predicted. Thus, the true LHV ACL could not be known before implementation of the IFQ or PFQ program. Also, the likelihood of unintended and potentially adverse effects becomes greater as more variability is introduced. Regardless of the alternative chosen, the ACLs for each species will be subject to the ACL/annual catch target (ACT) buffers currently in place. Therefore, the actual quota for each species distributed among PFQ/IFQ participants will be the LHV ACT, reduced from the LHV ACL by the buffer shown in Table 2.5.4. In the future, the Council may decide to revisit the LHV ACTs based on the performance of the LHV program.

Table 2.5.4. Buffers between the recreational ACL and ACT for each species.

Species	ACL/ACT buffer
Red Snapper	20%
Greater Amberjack	13%
Gray Triggerfish	10%
Gag	10%
Red Grouper	9%

Data Issues

Recreational landings in the Gulf are obtained through multiple sources. SRHS started in 1986 and covers headboats in the Gulf and South Atlantic. The Marine Recreational Information Program (MRIP), implemented in 2012, provides private angler and charter vessel landings and effort data for Gulf states other than Texas and Louisiana. Texas Parks and Wildlife Department (TPWD) began its own sampling program in 1986 and provides recreational landings, except for headboat landings, from Texas. MRIP replaced the Marine Recreational Fishery Statistics Survey (MRFSS), which collected data beginning in 1979. MRFSS landings data from 2004-2011 were calibrated to MRIP landings. In 2013, MRIP implemented new angler catch survey procedures, which improved the sampling program. However, changes in methods require calibration of data collected with the old methods versus the new methods, and these calibrations have only been completed for red snapper; therefore, the landings provided in this amendment have not been calibrated for the 2013 change in MRIP methods. Also in 2013, Louisiana began a sampling program in tandem with MRIP, called LA Creel, to sample fish landed in that state. In 2014, MRIP was discontinued in Louisiana and only LA Creel surveyed recreational landings. In 2015, MRIP re-entered Louisiana, but did not collect all data for charter vessels. LA Creel has recently been fully certified by MRIP, and will be the source of recreational landings from Louisiana, except headboats. Alabama and Mississippi also have programs that are undergoing review and expect to be certified sometime in 2018.

The HBC pilot program, conducted under an exempted fishing permit, was in effect in 2014 and 2015. This pilot program worked much like the proposed IFQ/PFQ program in this amendment. The collaborative was granted a proportion of the recreational red snapper and gag quotas based on 2011 landings of those species by participating vessels. Landings data from HBC vessels were still collected through the SRHS. Because their quota was based on previous gag and red snapper landings, the landings in 2014 and 2015 should not have differed markedly from years before the pilot program. However, in 2014 the regular red snapper recreational fishing season

was reduced to only nine days, substantially reducing red snapper landings for charter vessels and non-HBC headboats (Table 2.5.5); HBC headboats were not constrained by this short season. In 2015, the for-hire season was similar to other recent years and landings were similar as well.

Table 2.5.5. Recreational red snapper landings (in pounds) harvested by the for-hire component of the recreational sector.

Year	For-Hire Season Length (Days)	Charter Vessel	LHV	Total For-Hire	LHV %
2011	48	1,212,177	630,562	1,842,739	34%
2012	46	1,515,243	724,078	2,239,320	32%
2013	42	1,111,709	445,276	1,556,985	29%
2014	9	184,589	382,289	566,878	67%
2015	44	1,573,451	580,226	2,153,677	27%
2016	49	1,616,241	526,575	2,142,815	25%

Source: mrcat_rsnap81_13_01Dec14_APAISadjustedRedSnapper.

2.6 Action 6. Units of Measure for Quota Distribution and Reporting

Alternative 1. No Action. The LHV quotas are distributed and reported in pounds.

Alternative 2. The LHV quotas are distributed and reported in numbers of fish.

Alternative 3. The LHV quotas are distributed in pounds and reported in numbers of fish.

Discussion

Quotas for all managed species are set in pounds. Recreational data collection programs such as MRIP and the SRHS estimate recreational harvests in number of fish caught and in pounds. For the management measures considered in this amendment, the distribution of the quota allotted to the LHV component and between vessels in the LHV component could be based on pounds or number of fish.

Quota distributions to individual vessels expressed in pounds (**Alternative 1**) may be challenging for headboats, as well as for managers, due to the multitude of anglers on the vessels. Reporting landings in pounds would be more burdensome to vessel operators because they would need to weigh each fish. **Alternative 1** would also be more burdensome to enforcement for the same reason. However, because ACLs and quotas are set in pounds, no conversion would be needed to compare landings to the quotas.

Alternative 2 would require the conversion of the LHV portion of the quota from pounds to number of fish before distribution to participants. This would require an estimation of an average weight per fish, which can vary throughout the year and throughout the Gulf. The

commercial programs in the Gulf distribute annual allocations in pounds of fish. However, recreational anglers and for-hire operators are less concerned with weight of fish and more concerned with numbers because bag limits have historically been expressed in numbers of fish. In the HBC pilot program, port samplers and law enforcement agents found that numbers of fish were quick and easy to validate against the pre-landing notifications.

Alternative 3 mimics the distribution and reporting methods for the HBC pilot program. The HBC pilot program distributed allocation in pounds of fish, but participants reported in numbers of fish (for full details, see NMFS 2015). Each HBC vessel's individual amount of allocation in pounds was calculated by taking the vessel's percentage of the HBC aggregate landings and applying this to the HBC quotas. The pounds for each species were then converted to numbers of fish within the vessel accounts by using the average pre-season regional weight as determined through SRHS for the area in which they were fishing. Because the average weight varied by region and time, the amount of fish resulting from a set poundage varied as well. For example, 10,000 lbs in region A that had an average fish weight of 5 lbs would result in 2,000 fish, while 10,000 lbs in region B that had an average fish weight of 8 lbs would result in 1,250 fish.

In the HBC pilot program, landings reported in numbers were converted back to pounds to compare against the quota using both pre-season average weights (used to originally convert pounds to fish) and in-season average weights (based on the most recent weights collected during the year). In-season weights were based on species-specific regional and monthly average values. During the first year of the program, the in-season and pre-season weights were similar for both species (less than 5% difference). In the second year of the program, the in-season weights were greater for both red snapper and gag (up to 23% difference). The difference in weights between years (Table 2.4.1), particularly with gag, suggests that in-season weights should be monitored closely if allocation and landings are in numbers of fish.

Table 2.6.1. Minimum and maximum monthly average in-season fish weights (in pounds) for the HBC pilot program.

	Minimum fish weight	Maximum fish weight
Red Snapper 2014	2.16	9.91
Red snapper 2015	2.67	9.46
Gag 2014	6.14	14.57
Gag 2015	6.47	23.69

Source: NMFS SERO Neptune database

Due to temporal and spatial fluctuations in average weights, weights might have to be monitored during the year. For example, in the HBC pilot program, NMFS compared the pre-season average weight to the actual average weight during the season and made adjustments if warranted. Port side sampling is crucial for these calculations and may need to be increased to accurately track average weights per region. Fish tags could also be used to validate landings in numbers.

2.7 Action 7. Initial Apportionment of Shares

Action 7-1. Time Period of Landings to Determine Initial Apportionment of Shares

Alternative 1. No Action. Do not apportion shares to participants based on any landings period.

Alternative 2. Apportion initial shares among eligible participants based on average landings by vessel for each species during the most recent five years (2011-2015).

Alternative 3. Apportion initial shares among eligible participants based on average landings by vessel for each species during the most recent five years (2011-2015) omitting the year with the lowest landings.

Preferred Alternative 4. Apportion initial shares among eligible participants based on the year with the highest landings by vessel for each species during the most recent five years (2011-2015).

Discussion

For an IFQ or PFQ program, shares are distributed to participants for each species at the start of the program. Shares are a percentage of the quota for each species and do not change for each participant, unless share transfers are allowed under an IFQ program.

The Council began development of this amendment for LHV because those vessels have landings histories through the SRHS. However, **Alternative 1** would not use landings to determine the initial apportionment of shares. This alternative would only be appropriate if shares were distributed 100% equally among all vessels or 100% by auction. However, the Council requested an amendment specific to vessels with landings histories, so those types of distribution should not occur in Amendment 42.

Alternatives 2-4 would establish the time interval used to determine landings for each eligible participant. As an example, Tables 2.7.1 to 2.7.5 provide preliminary estimates of the number of vessels in each share category for each species using data from 2015 only.

Table 2.7.1. Preliminary frequency distribution of red snapper shares (percent of the total LHV landings) by vessel based on 2015 landings.

Share Category – Red Snapper	Number of Vessels	Cumulative Frequency
0	13	13
0.01-0.10	8	21
0.11-0.99	15	36
1.00-1.99	16	52
2.00-3.99	9	61
4.00-9.20	7	68

Source: SRHS database, MRIP, LA Creel, TX HBS.

Table 2.7.2. Preliminary frequency distribution of greater amberjack shares (percent of the total LHV landings) by vessel based on 2015 landings.

Share Category – Greater Amberjack	Number of Vessels	Cumulative Frequency
0	25	25
0.01-0.10	4	29
0.11-0.99	23	52
1.00-1.99	6	58
2.00-9.99	6	64
10.00-18.50	4	68

Source: SRHS database, MRIP, LA Creel, TX HBS.

Table 2.7.3. Preliminary frequency distribution of gray triggerfish shares (percent of the total LHV landings) by vessel based on 2015 landings.

Share Category – Gray Triggerfish	Number of Vessels	Cumulative Frequency
0	38	38
0.01-0.10	3	41
0.11-0.99	11	52
1.00-1.99	5	57
2.00-9.99	7	64
10.00-16.55	4	68

Source: SRHS database, MRIP, LA Creel, TX HBS.

Table 2.7.4. Preliminary frequency distribution of gag shares (percent of the total LHV landings) by vessel based on 2015 landings.

Share Category – Gag	Number of Vessels	Cumulative Frequency
0	22	22
0.01-0.10	14	36
0.11-0.99	16	52
1.00-1.99	8	60
2.00-9.99	3	63
10.00-15.50	5	68

Source: SRHS database, MRIP, LA Creel, TX HBS.

Table 2.7.5. Preliminary frequency distribution of red grouper shares (percent of the total LHV landings) by vessel based on 2015 landings.

Share Category – Red Grouper	Number of Vessels	Cumulative Frequency
0	29	29
0.01-0.10	4	33
0.11-0.99	19	52
1.00-1.99	3	55
2.00-7.99	9	64
8.00-20.65	4	68

Source: SRHS database, MRIP, LA Creel, TX HBS.

Alternative 2 would use a five-year time period of landings. Of the 67 vessels selected to participate in the SRHS for 2016, 60 had landings every year during 2011-2015. For the seven vessels without landings every year, averages including zero landing years could result in low amounts of shares distributed. These vessels may have landed fish, but were not selected for the SRHS; therefore, their landings would not be recorded by vessel.

Alternative 3 would account for the fact that a vessel may have a year without any landings by allowing the vessel to drop the lowest year of landings during the five-year period. However, five vessels had more than one year without landings.

Preferred Alternative 4 would use only one year of landings, but it would be the highest year for each vessel during the five-year period. All vessels currently in the SRHS and that are eligible for the program based on the Council's control date of December 31, 2015, had at least one year of landings during 2011-2015. One vessel was selected for the SRHS in 2016 that will not be eligible; more vessels may be selected in the future that would not be eligible either. In addition, eight vessels previously selected for the SRHS had at least one year of landings during 2011-2015, but are no longer in the SRHS. Whether those vessels still have reef fish for-hire permits has not been determined at this time.

Action 7-2. Distribution of Initial Shares

Alternative 1. No Action. Do not distribute shares to participants.

Preferred Alternative 2. Distribute a percentage of initial shares for each species proportionally based on average landings per permit during the time interval selected in Action 7-1 and distribute the remaining percentage of the initial shares equally among LHV endorsement/permit holders participating in the program. Percentages distributed proportionally and equally are as follows:

0-4	Distribution of Initial Shares		
Option	Proportional	Equal	
Preferred 2a	100	0	
2 b	75	25	
2c	50	50	
2d	25	75	

Alternative 3. Distribute all or some initial shares for each species through an auction system. All LHV endorsement/permit holders participating in the program are allowed to place bids.

0.4	Distribution of Initial Shares				
Option	By Alternative 2	By Auction			
3a	25	75			
3b	50	50			
3c	75	25			

Discussion

The quota for the LHV program will be determined in Action 5. For an IFQ or PFQ program to be developed, shares of the LHV quota would need to be distributed to participants at the beginning of the program. Therefore, **Alternative 1** would not allow development of these programs.

Preferred Alternative 2 (Options 2a to **2d)** would distribute a portion of the quota equally among participants and the remaining percentage proportionally, e.g., **Option 2b** would distribute 25% of the initial shares equally and 75% proportionally (based on landings histories). Landings used for calculating initial shares for each species would come from the SRHS database during the time period chosen in Action 7-1. **Preferred Option 2a** would distribute all shares proportionally; this is how initial shares were distributed for the commercial IFQ programs.

Alternative 3 would distribute shares through an auction facilitated by NMFS. The Magnuson-Stevens Act states that a Council must consider an auction system or other program to collect royalties for the initial, or any subsequent, distribution of allocations in a LAPP. Although the Council has considered auctions, none of the LAPPs in the Southeast Region utilized this option. Options 3a-3c would distribute a portion of the quota by auction and a portion of the quota by the means selected in Alternative 2. Portions of the LHV quota distributed through auctions range from 25% (Option a) to 75% (Option c). Shares distributed by auction would go to the highest bidder.

Appeals

In accordance with Section 303A(c)(I) of the Magnuson-Stevens Act, an appeals process will be established to provide a procedure for resolving disputes regarding initial distribution of shares. A small percentage of the quota will be set aside at the beginning of the program to cover potential successful appeals. Items subject to appeal are eligibility to participate, the accuracy of the landings, and the correct assignment of landings to the permit owner. Appeals based on hardship factors will not be considered.

Landings data for appeals would be based on logbooks submitted to and received by the Southeast Fisheries Science Center (SEFSC) by a date to be determined, for the years chosen in the preferred alternative and option in Action 7-1. In addition, NMFS records of federal reef fish charter/headboat permits constitute the sole basis for determining ownership of such permits.

Appeals will be processed by the NMFS National Appeals Office and will be governed by the regulations and policy of the National Appeals Office at 15 CFR Part 906. Appeals must be submitted to the National Appeals Office no later than 90 days after the date the initial determination is issued. Appeals must contain documentation supporting the basis for the appeal. The Regional Administrator (RA) will review, evaluate, and render final decision on appeals. NMFS will notify potential participants of the appeals dates and process when initial distribution is determined.

2.8 Action 8. Transferability of Shares (IFQ only)

Note: A PFQ program attaches shares to a permit. Therefore, if a permit is moved from one owner to another, the shares automatically move with the permit and are not considered "transferred."

Alternative 1. No Action. Do not allow transfer of shares.

Preferred Alternative 2. Require a valid reef fish for-hire permit with LHV endorsement or a reef fish LHV permit (whichever is established in Action 4) to receive shares through transfer. Shares can only be transferred to US citizens or permanent resident aliens.

Alternative 3. Shares can be transferred to any US citizen or permanent resident alien.

Discussion

The Magnuson-Stevens Act prohibits any person from participating in a LAPP that is not a U.S. citizen, corporation, partnership, or other entity established under the laws of the U.S. or any state, or a permanent resident alien. **Alternative 1** would be the most restrictive of the alternatives. Shares would be distributed at the beginning of the program, and no transfers would be allowed. Therefore, no participant could adjust the amount of shares (s)he owns and no one could get into the program by obtaining shares. If a permit expires or is transferred, the shares would stay with the individual. This could allow shares to be held by individuals who no longer participate in the fishery. The lack of transferability would limit the efficiency of the program because the shares would not flow to their highest value use. In addition, **Alternative 1** would not allow program participants to adjust and react following temporal fluctuations or long term regional variations in species abundance across the Gulf. Furthermore, not allowing share transfers may work against the goals and objectives of the program.

Preferred Alternative 2 would require a reef fish charter/headboat permit and LHV endorsement or reef fish headboat permit (whichever is established in Action 4) to receive shares through transfer. Eligibility criteria to qualify for a LHV endorsement or permit and thereby eligibility to receive shares are discussed in Action 4. **Preferred Alternative 2** would ensure that all shares stay with participants eligible to harvest reef fish species included in this program.

Alternative 3 would allow any US citizen or permanent resident alien to set up an account and acquire transferred shares. Alternative 3 is comparable to the current transferability provisions in the red snapper and grouper-tilefish commercial IFQ programs. Although a federal commercial reef fish permit was needed to receive initial shares, the commercial IFQ programs do not currently have permit requirements for acquiring shares. During the first five years of each commercial program, shares could only be transferred to permit holders, but as of 2012 for red snapper and 2015 for grouper/tilefish, anyone meeting the citizenship requirement can open an IFQ account and receive transferred shares.

2.9 Action 9. Maintenance of Shares

Alternative 1. No Action. Shares can be held by any US citizen or permanent resident alien.

Preferred Alternative 2. Require a reef fish for-hire permit with LHV endorsement or an LHV permit (whichever is established in Action 4) to hold shares. Shares can only be held by US citizens or permanent resident aliens. For an IFQ program, if a participant transfers their permit/endorsement or the permit/endorsement expires, the owner must divest of their shares. For a PFQ program, if a permit/endorsement is transferred, the shares automatically transfer with it; if a permit/endorsement terminates, NMFS will redistribute the shares proportionally to the current participants.

Alternative 3. Require either a reef fish for-hire permit (with or without endorsement), an LHV permit, or a charter vessel permit (if established in Amendment 41) to hold shares. Shares can only be held by US citizens or permanent resident aliens. For an IFQ program, if a participant transfers their permit/endorsement or the permit/endorsement expires, the owner must divest of their shares. For a PFQ program, if a permit/endorsement is transferred, the shares automatically transfer with it; if a permit/endorsement terminates, NMFS will redistribute the shares proportionally to the current participants.

Discussion

Alternative 1 would be the same as for the commercial IFQ programs. A person is an individual, corporation, partnership, or other entity established under the laws of the United States or any state, or a permanent resident alien. A person who was in the program initially and received shares could continue to hold those shares after transferring the permit. This would allow shares to be held by individuals who do not participate in the type of fishing the program was designed to manage. These individuals' involvement in the program would be limited to trading shares and annual allocation.

Preferred Alternative 2 would require shares to remain with participants in the LHV program. With an IFQ program, individuals would be required to divest their shares once notified by NMFS if they no longer participate in the LHV program. With a PFQ program, if the permit is no longer associated with the LHV program, those shares would automatically revert to NMFS and be redistributed to current participants.

With **Alternative 3**, any Gulf reef fish for-hire permit would be eligible to hold shares and receive allocation each year. Gulf reef fish for-hire permit holders that are not associated with the LHV program (i.e., no endorsement or LHV permit) would not be allowed to harvest their annual allocation but could transfer annual allocation on a yearly basis.

Under an IFQ program, the shares belong to the account holder and are not tied to the permit after initial distribution. **Alternatives 2** and **3** would require a participant to divest of their IFQ shares if they no longer possess the appropriate permit/endorsement. Under **Alternative 3**, if the account holder transfers the permit, he would be required to transfer his shares to another account with a valid for-hire permit once notified by NMFS. If the permit expires but is renewable, the account holder would have one year to renew the permit or transfer his shares to

another account with a valid charter/headboat permit. If the account holder did not divest their shares as required by NMFS, NMFS would redistribute the shares to current shareholders.

Under a PFQ program, **Alternatives 2** and **3** would automatically be in effect because when a permit is transferred, the shares would stay with the permit. Also under a PFQ program, if a permit expires, the shares would no longer be available to the account holder. These shares would revert to NMFS and would be redistributed to remaining program participants.

2.10 Action 10. Transferability of Annual Allocation

Alternative 1. No Action. Do not allow transfer of LHV annual allocation.

Alternative 2. Require a valid reef fish charter/headboat permit with LHV endorsement or a valid reef fish headboat permit (whichever is established in Action 4) to receive annual allocation through transfer. Annual allocation can only be transferred to US citizens or permanent resident aliens.

Alternative 3. Annual allocation can be transferred to any US citizen or permanent resident alien.

Alternative 4. Annual allocation may be transferred by surrendering it to a NMFS allocation bank from which other program participants may obtain the allocation by:

Option 4a: lottery.
Option 4b: auction.

Discussion

Alternative 1 would be the most restrictive of the alternatives. Allocation would be distributed at the beginning of the year to shareholders, and no transfer would be allowed. Therefore, no one could obtain additional allocation. Obtaining extra allocation during the year is often desirable if a participant uses all of their allocation before the end of the year. If IFQ/PFQ species were caught incidental to fishing for other species, allocation could not be obtained and those species would need to be discarded. Alternative 1 would not promote the efficient use of annual allocation because it would prevent annual allocation from flowing to their highest valued uses. Alternative 1 would not offer program participants the flexibility to adjust their catch composition to reflect changes in the relative abundance of the species in the program or to adjust to temporary increases (or decreases) in demand for a given species or group of species in a particular region.

Alternative 2 would keep annual allocation within the LHV program. For **Alternative 2**, only those who are eligible to harvest species included in the LHV program would be allowed to receive annual allocation through transfer.

With **Alternative 3**, any US citizen or permanent resident alien could hold allocation even without a vessel in the LHV or without a permit. However, persons holding allocation without a permit could not fish the allocation. Those individuals would only be able to receive allocation

through transfer. The commercial IFQ programs do not currently have permit or participation requirements for holding allocation. During the first five years of each commercial program, allocation could only be transferred to permit holders, but now (as of 2012 for red snapper and 2015 for grouper/tilefish) anyone meeting the citizenship requirement can have an IFQ account and receive transferred allocation.

Alternative 4 would allow program participants that do not intend to use all or a portion of their annual allocation to surrender it to NMFS. The surrendered allocation would be held in a NMFS allocation bank, and two options for redistribution are considered. Other program participants could obtain the allocation by lottery (Option 4a) or auction (Option 4b). Participation in the lottery (Option 4a) or auction (Option 4b) would be restricted to participants with a valid or renewable reef fish charter/headboat permit with LHV endorsement or a reef fish LHV (whichever is established in Action 4). Following the typical timeframe for distribution of annual allocation, the redistribution could occur at the beginning of the calendar year. Aspects of the redistribution that would need to be addressed include maximum amounts that can be acquired by an entity and, in the case of multiple distributions, how often would redistribution occur. Revenues from either lottery (Option 4a) or auction (Option 4b) would not constitute cost recovery fees and thus would not offset additional administrative costs for this redistribution program.

In wildlife management, lotteries (**Option 4a**) have been used to distribute hunting tags when the demand for the resource exceeds sustainable harvest. Johnston et al. (2007) suggest that some hunting lotteries use "limited harvest with enhanced lottery rationing" to enhance the likelihood that repeat applicants who may have been unsuccessful in prior lotteries could participate in the future. For example, some states that use lottery systems for wildlife management set up a point system for lottery applicants. While this literature pertains to hunting tags, the concepts are relevant to IFQ and PFQ programs.

Auctions (**Option 4b**) typically represent market or price-based sales based on the highest bidder's willingness to pay. Johnston et al. (2007) state auctioning of hunting rights in wildlife management typically helps states generate revenue. If the Council moves forward with **Option 4b** for redistributing surrendered allocation, only a portion of all allocation available in the program (i.e., only the surrendered allocation) would be auctioned thereby avoiding the equity concerns from auctioning the entire quota.

2.11 Action 11. Share Caps

Alternative 1. No Action. Do not constrain the amount of shares that one person can hold.

Preferred Alternative 2. In each share category, no person shall hold more shares than the maximum percentage issued to the recipient of the largest shares at the time of the initial apportionment of shares.

Alternative 3. Across all share categories, no person shall hold more shares than the maximum percentage issued to the recipient of the largest aggregate share at the time of the initial apportionment of shares.

Discussion

A person is an individual, corporation, partnership, or other entity established under the laws of the United States or any state, or a permanent resident alien. Each person's total holdings are the sum of the shares assigned to each vessel that a person owns plus their portion of the shares for each vessel the person has an interest in (e.g., someone who owns part of a corporation). The Magnuson-Stevens Act requires NMFS to ensure that no limited access privilege holder acquires an excessive share of the total privileges in the program. Thus, **Alternative 1** would not meet the requirements of the Magnuson-Stevens Act.

For each species (share category), **Preferred Alternative 2** would cap the maximum share a participant can hold to the percentage issued to the recipient of the largest shares at the time of the initial apportionment. **Preferred Alternative 2** could result in a different maximum percentage for each share category in the program, depending on the amount of share initially distributed to the largest shareholder. For a given species, **Preferred Alternative 2** would allow all participants, except the one who received the greatest amount of shares, to increase their holdings by acquiring additional shares. The commercial IFQ programs follow **Preferred Alternative 2**, although the commercial red snapper IFQ program only has one species.

Alternative 3 would set an aggregate share cap across all species (share categories). For example if a participant received 1% of 100,000-lb quota for species A and 2.5% of a 200,000-lb quota for species B, the aggregate shareholding would be 2.0% of a 300,000-lb total. By setting an aggregate cap, **Alternative 3** would likely prevent a single entity from holding the largest percentage in each share category. **Alternatives 2** and **3** could be implemented jointly, thereby setting species-specific caps as well as an aggregate cap.

2.12 Action 12. Cap on Allocation Usage

Note: Allocation usage is defined as the amount of landings year-to-date in an account plus the remaining allocation in that account on the same day.

Alternative 1: No Action. Do not establish a limit on allocation usage.

Alternative 2. During each calendar year, limit the annual allocation usage of each species to the allocation equal to the share cap (as determined in Action 11) in **each species category.**

Option 2a: Per vessel account

Option 2b: Per shareholder account (unique permit holder)

Alternative 3. During each calendar year, limit the annual allocation usage of each species to the allocation equal to the aggregate share cap (as determined in Action 11) **across all species categories**.

Option 2a: Per vessel account

Option 2b: Per shareholder account (unique permit holder)

Discussion

Allocation usage is defined as the amount of landings year-to-date in an account plus the remaining allocation in that account at that point in time. Alternative 1 would not restrict allocation usage. Alternative 1 would not be consistent with the provisions of the Magnuson-Stevens Act. Magnuson-Stevens Act 303(A)(c)(5)(D) requires that in developing a LAPP the Council ensure that participants do not acquire an excessive share of the total limited access privileges in the program by establishing a maximum share, expressed as a percentage of the total limited access privilege that a participant can hold, acquire, or use. National Standard 4 similarly requires that an allocation of fishing privileges be carried out in such a manner to prevent a particular participant from acquiring an excessive share of such privileges. The Magnuson-Stevens Act does not define the magnitude of an "excessive share" of harvest privileges.

For a given species, **Alternative 2** would restrict a vessel account (**Option 2a**) or unique permit holder (**Option 2b**) from using (landing plus holding) more than the amount corresponding to the **share cap for that species**. The usage cap would be based on the cumulative landings (year-to-date) and the balance of allocation in the account each day.

Alternative 3 would restrict a vessel account (Option 3a) or unique permit holder (Option 3b) from using (landing plus holding) more than the amount corresponding to the aggregate share cap across all species included in the program. Based on the five species that could be included in the program (Action 3), the amount of allocation that would correspond to the cap across species may be substantial. As a result, Alternative 3 (Options 3a and 3b) would be less effective in precluding an entity or individual from using an excessive share of the harvest privileges.

2.13 Action 13. Retaining Annual Allocation before a Quota Reduction

Alternative 1. No Action. Distribute 100% of annual allocation to IFQ shareholders on January 1 of each year.

Alternative 2. If the quota for a species is anticipated to decrease after January 1, the Regional Administrator has the authority to retain the anticipated amount of decrease during distribution of allocation for that species at the beginning of the year. If the decrease does not occur by a set date, the amount retained will be distributed as soon as possible.

Option 2a: June 1 Option 2b: August 1

Discussion

This action addresses a decrease in the LHV ACL and quota that may happen after the first of the year. After allocation is distributed to shareholders on January 1, taking any back would be impossible if participants have landed all or some of their allocation or have transferred allocation to another participant. Under **Alternative 1**, NMFS would not be able to implement a quota decrease for the recreational sector until the following fishing year, unless the Council determines to withhold annual allocation through a framework action and there is sufficient time to implement such an action.

A similar problem was encountered with the commercial red snapper IFQ program, and the solution was to hold back some of the quota at the beginning of the year to cover the anticipated decrease in the commercial quota⁷. Under **Alternative 2**, NMFS would hold back the anticipated amount that may be subtracted from the total LHV quota before distributing allocation to each shareholder at the beginning of the year. If the anticipated decrease did not occur or was less than expected, NMFS would distribute the hold back amount proportionally to shareholders. Should IFQ shares be transferred between participants during a year in which some portion of annual allocation was withheld and later distributed, the holdback amount will be distributed according to the current shareholder at the time the holdback amount is released. NMFS would only exercise this authority if the Council has approved an action that would decrease the quota, but the rule implementing the action could not be in place until after the start of the year.

If the Council selects **Alternative 2**, and an expected ACL reduction does not occur, **Option a** and **Option b** would provide a date by which any withheld allocation would be distributed to shareholders if the effective date of the final rule implementing the ACL reduction has not occurred. An earlier release date (**Option 2a**) would provide IFQ program participants more time to utilize the quota and would be less disruptive to their business, while selecting a later

⁷ The hold back of commercial red snapper allocation for 2016 only was implemented through a framework action. An action to give authority to the Regional Administrator to hold back commercial allocation for IFQ species in the future is being considered in Reef Fish Amendment 36A.

release date (**Option 2b**) would provide NMFS with additional time to complete the regulatory process, should an issue or delay arise.

Regardless of the option selected, or if no option is selected, the RA would retain the authority to distribute withheld quota at any time it becomes known that an expected ACL reduction is not going to occur during the year in which allocation was withheld. Should shares be transferred between participants during a year in which some portion of annual allocation was withheld and later distributed, the allocation would be distributed according to the shareholder at the time the allocation is released.

2.14. Action 14. Cost Recovery Fees

Alternative 1. No Action. Cost recovery fees will not be collected.

Alternative 2. For each participant, cost recovery fees will be based on the total value obtained by multiplying a **standard price** per pound (or per fish) of a given species by the number of pounds (or of fish) of that species harvested by the participant during the specified time period. The cost recovery fee will be up to 3% of the total value. The **standard price** will be equal to (**AP Preferred**):

Option a: the average commercial ex-vessel price from the previous year

Option b: the average price of annual allocation in this program

Alternative 3. Cost recovery fees will be calculated as follows: Total fees paid per trip and total pounds (or number of fish) of all species harvested must be reported. The total fees will be divided by the total <u>pounds</u> (or number of fish) of all species harvested to achieve a price per pound (or per fish). The price per pound (or per fish) will be multiplied by the pounds (or number of fish) of covered species (species in the program) **harvested** to achieve the total value. The cost recovery fee will be up to 3% of the total value.

Discussion

Alternative 1 would not conform to Magnuson-Stevens Act cost recovery provisions. The Magnuson-Stevens Act requires that LAPPs include provisions to recover the incremental costs of management, monitoring, data collection and analysis, and enforcement. This includes the cost of computer systems necessary to manage the disbursement and tracking of annual harvest privileges, as well as observer and enforcement programs. The Magnuson-Stevens Act limits cost recovery fees to 3% of the value of the fish harvested under the program. Fees collected must be in addition to any other fees charged under the Magnuson-Stevens Act and must be deposited in the Limited Access System Administration Fund established under Section 305(h)(5)(B) of the Magnuson-Stevens Act. In the commercial IFQ programs, the fees are calculated during sale, deducted from the seller's check, and submitted by the dealer to NMFS on a quarterly basis. Because headboats do not sell fish, the program participants would be responsible for submitting the fees directly to NMFS.

Alternative 2 would require the specification of standard prices. NMFS would publish, at regular intervals, standard prices (per pound or per fish) by species to be used for cost recovery purposes. These standard prices would be determined based on average commercial ex-vessel prices from the previous year (Option a) or average prices of annual allocations (Option b). For Option b, if annual allocation prices for species categories in the LHV program are not available, an average annual allocation price derived from commercial IFQ programs could be used as a temporary proxy. Because of the small number of vessels that would initially participate in the LHV program (approximately 70), the number of transactions to be used to compute the average allocation prices may be limited. For each species included in the LHV program, cost recovery fees to be submitted by a participant cannot exceed 3% of the total dollar amount calculated by multiplying the standard price by the pounds (or numbers) of fish harvested by the participant's vessel(s) during the specified time interval. The exact percentage to collect will be determined by NMFS based on reasonable estimates of costs incurred to administer the program. The percentage withheld would be adjusted as the costs estimates are refined.

Alternative 3 would require program participants to report total fees collected for each trip. The percentage to be recovered, up to a maximum of 3%, will be determined by NMFS based on estimates of costs incurred to administer the LHV program. Alternative 3 would use the actual fees paid by passengers and the amount of fish harvested as the price basis. The fees for each trip would need to be reported, as well as the amount of all fish caught of all species. For Alternative 3, actual weights or the number of fish harvested would be needed. Dividing the total fees by the total number or weight of all retained fish would give a price per unit (pound or fish). These prices would be based on all fish harvested, even if they are not species in the LHV program, because those fish have value to the fishermen as well. However, the 3% cost recovery fee would only be assessed on species in the LHV program. Compared to Alternative 2, Alternative 3 may lead some vessel operators to underreport the passenger fees collected to minimize their cost recovery burden. Numerical examples illustrating Alternative 3 (for pounds and number of fish) are provided below.

Alternative 3 Example (pounds of fish):

Total passenger fees = \$5,000 Total pounds of all species harvested= 1,000 lb Price per pound = \$5,000/1,000lb = \$5/lb Total pounds of LHV Program Species harvested = 500 lb Value of LHV Program Species = \$5/lb x 500 lb = \$2,500 Cost Recovery Fee = \$2,500 x 0.03 = \$75

Alternative 3 Example (number of fish):

Total passenger fees = \$5,000 Total number of all species harvested = 100 fish Price per fish = \$5,000/100 fish = \$50/fish Total LHV Program Species harvested = 50 fish Value of LHV Program Species = \$50/fish x 50 fish = \$2,500 Cost Recovery Fee = \$2,500 x 0.03 = \$75

2.15. Action 15. New Entrants

Alternative 1. No Action. No additional LHV endorsements to the reef fish for-hire permit or reef fish LHV permits (whichever is established in Action 4) will be issued. To participate in the LHV program, a vessel owner must obtain an LHV endorsement to the reef fish for-hire permit or a reef fish LHV permit (whichever is established in Action 4) from a current participant.

Alternative 2. At the beginning of each calendar year, vessels with valid federal Gulf for-hire reef fish permits that are not participating in the LHV program may be issued an LHV endorsement to the reef fish for-hire permit or a reef fish LHV permit (whichever is established in Action 4). To be able to start participating in the LHV program at the beginning of the year, potential new entrants would have to apply for an LHV endorsement or permit before the beginning of the year. The amount of lead time required will be determined by NMFS permit office. Receiving an LHV endorsement or an LHV permit (whichever is established in Action 4) does not grant shares or annual allocation to the recipient. Furthermore, as all participants in the LHV program, these recipients have can only fish on the LVH quotas.

Alternative 3. At any time of the year, vessels with valid federal Gulf for-hire reef fish permits that are not participating in the LHV program may be issued an LHV endorsement to the reef fish for-hire permit or a reef fish LHV permit (whichever is established in Action 4). However, the LHV endorsement or permit will not be effective until the beginning of the next fishing year. Receiving an LHV endorsement or permit (whichever is established in Action 4) does not grant shares or annual allocation to the recipient.

Preferred Alternative 4. At the beginning of each calendar year, vessels with valid federal Gulf for-hire reef fish permits that are not participating in the LHV program are eligible to apply for an LHV endorsement to the reef fish for-hire permit or for LHV permit (whichever is established in Action 4) *if the vessels are selected to participate in the Southeast Region Headboat Survey and have passenger capacity greater than 49 passengers*. Receiving an LHV endorsement or an LHV permit (whichever is established in Action 4) does not grant shares or annual allocation to the recipient.

Discussion

Alternative 1 would not allow entries into the LHV program outside of endorsement/permit transfers. Therefore, **Alternative 1** would cap the total number of participants in the LHV program at the number of participants identified during the implementation phase of the program.

Alternatives 2-3 and Preferred Alternative 4 would allow the number of participants in the LHV program to expand over time by allowing new entrants, other than those who elected to join the program by acquiring LHV endorsements or permits through transfer. Alternative 2 would let prospective participants in the LHV program apply for an endorsement at the beginning of each calendar year. Depending on the number of applicants, Alternative 2 could result in delays in the issuance of LHV endorsements or permits. Although the LHV endorsements or permits would only be valid starting January 1 of the calendar year following

the year of application, **Alternative 3** would allow applicants to request an endorsement or permit at any time during a year. Therefore, **Alternative 3** would allow NMFS to issue LHV endorsements or permits on a more manageable timetable and could mitigate delays in processing applications that could result from **Alternative 2**. **Preferred Alternative 4** would restrict the eligibility to apply for an endorsement or a reef fish LHV permit (whichever is established in Action 4) to vessel that are selected for the SRHS and carry over 49 passengers, and would limit the application period to the beginning of each year.

Alternatives 2-3 and Preferred Alternative 4 would not grant shares or annual allocation to new entrants. Once a prospective applicant receives a LHV endorsement or permit, (s)he would be responsible for acquiring shares or annual allocation to be able to harvest reef fish species included in the LHV. It is also noted that once a new entrant receives an LHV endorsement or permit, he would de facto forego opportunities to harvest LHV-managed species as a charter operator. To prevent new entrants from fishing as members of the charter component and as participants in the LVH program during the same calendar year, newly issued LHV endorsements to the reef fish for-hire permit or reef fish LHV permits (whichever is established in Action 4) would not be valid until the first of the year.

2.16. Action 16. Set-Aside for New Entrants

Action 16-1. Amount of LHV Quota to Set Aside at the Onset of the Program

Alternative 1. No Action. Do not set aside a portion of the LHV quota for new entrants.

Alternative 2. Set aside a portion of the LHV quota for new entrants. For each species, set the percentage of the corresponding LHV quota to set aside at:

Option a: 1% Option b: 2% Option c: 5%

Discussion

Alternative 1 would not determine the percentage of the LHV quota to be set aside for new entrants. Therefore, Alternative 1 would not establish of a set-aside program for new entrants. At the onset of the program, Alternative 2 would establish a set-aside program for a one-time distribution to new entrants. For each reef fish species included in the LHV program, the amount of LHV quota to set aside would be equal to 1% (Option a), 2% (Option b), or 3% (Option c). In addition to the percentage of the LHV set aside, the number of pounds available for distribution to new entrants will be determined by the allocation alternative selected in Action 5 (Allocation of ACL to the LHV Program). For example, amounts that would be allotted to new entrants based on Action 5-Alternative 4, which was recommended by the Headboat AP as a preferred, are provided in Table 2.16.1.

Table 2.16.1 Recreational ACLs, percentage and pounds allocated to the LHV program and set aside amounts by species. LHV program allocations are based on Action 5 – Alternative 4.

	Recreational	LHV I	LHV Program		Set aside (pounds)	
	ACL	Percent	Pounds	Option a	Option b	Option c
Red						
Snapper*	2,848,000	31.30%	891,424	8,914.24	17,828.48	44,571.20
Greater						
Amberjack	548,641	7.50%	41,148	411.48	822.96	2,057.40
Gray						
Triggerfish	49,759	11.80%	5,872	58.72	117.43	293.58
Gag						
Gag	1,903,000	4.60%	87,538	875.38	1,750.76	4,376.90
Red						
Grouper	2,580,000	3.60%	92,880	928.80	1,857.60	4,644.00

^{*}For red snapper, a percentage of the for-hire ACL is allocated to the LHV program.

Action 16-2. Eligibility to Receive Set Aside Shares

Alternative 1. No Action. Do not define eligibility criteria for receiving set aside shares.

Alternative 2. Set aside shares would be distributed to those who become eligible as new entrants by the time of apportionment of set aside shares.

Discussion

Alternative 1 would not define eligibility criteria for receiving set aside LHV shares. Therefore, **Alternative 1** would preclude new entrants from receiving set aside shares by failing to identify eligible recipients.

Alternative 2 would distribute set aside shares to operators who become eligible as new entrants in the LHV program by the time of apportionment of set aside shares. The time of apportionment of set aside shares has yet to be determined. In setting a date (or time interval) for the final determination of new entrants, the Council should account for the amount of time necessary to apply for and receive a LHV endorsement or permit (whichever is established in Action 4).

Action 16-3. Distribution of the Set Aside to New Entrants

Alternative 1. No Action. Do not distribute set aside shares.

Alternative 2. Distribute set aside shares equally among eligible new entrants

Alternative 3. For each share category, no new entrant may receive more shares than the minimum distributed during initial apportionment to an individual recipient.

Discussion

Alternative 1 would not distribute set aside shares to new entrants. **Alternative 1** would not be consistent with the establishment of a set-aside for the purpose of improving new entrants' access to LHV shares.

Alternative 2 would distribute set aside shares equally among new entrants. Based on the preferred alternative in Action 15 (new entrants) up to 25 new entrants could be eligible to receive set aside shares (J. Stephen, NMFS-SERO pers. comm. January 4, 2018). For a fixed number of LHV shares, the amount received by each new entrant would decline as the number of new entrants increases.

Alternative 3 would not grant to a new entrants more shares than the minimum distributed during initial apportionment to an individual recipient. **Alternative 3** would preclude new entrants for receiving relatively substantial numbers of shares if the percentages of LHV quota set aside are large, e.g., 5% and the number of new entrants is small. If the amount of the set aside is greater than the amount distributed to new entrants, the remainder would be distributed proportionally to all participants.

CHAPTER 3. AFFECTED ENVIRONMENT

3.1 Description of the Fishery

Detailed descriptions of the reef fish fishery have been provided in previous management actions and many focus on fishing for particular species, such as Amendment 31 (GMFMC 2009), Amendment 32 (GMFMC 2011b), Amendment 35 (GMFMC 2012c), Amendment 38 (GMFMC 2012), and Amendment 46 (GMFMC 2017), and are incorporated here by reference. Additionally, Sections 3.4 and 3.5 also provide information on the respective economic and social environments of the fishery.

Management of the commercial and recreational sectors fishing for reef fish in federal waters began in 1984 with the implementation of the Fishery Management Plan (FMP) for the Reef Fish Resources in the Gulf of Mexico (Gulf). This FMP has been continuously amended through plan amendments and framework actions (also known as regulatory amendments). Resultant regulatory measures are codified at 50 CFR 622. A summary of reef fish management actions can be found on the Gulf of Mexico Fishery Management Council's (Council) web page.⁸ Presently, the reef fish fishery management unit contains 31 species.

Each of the species included in this amendment has separate annual catch limits (ACL) for the commercial and recreational sectors based on allocations determined by the Council based on historical landings (Table 3.1.1). Further, the red snapper recreational ACL is allocated 57.7% to private anglers and 42.3% to for-hire vessels.

Table 3.1.1.	Allocations	of five	species	of reef	fish	between sectors	S
I ame Jalaka	Anocanons		SUCCIOS	OIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	11011	DOLWCOH SCOUNT	л.

Stock	Recreational Allocation	Commercial Allocation
Gag	61%	39%
Red grouper	24%	76%
Red snapper	49%	51%
Gray triggerfish	79%	21%
Greater amberjack	73%	27%

3.1.1 Commercial Sector

The commercial sector fishing for reef fish in the Gulf of Mexico (Gulf) is managed through, but not limited to, ACLs, annual catch targets (ACT), accountability measures (AM), size limits, trip limits, individual fishing quota (IFQ) programs, seasonal closures, time and area/gear restrictions, and gear requirements. Table 3.1.1.1 summarizes the current minimum size limits, trip limits, and seasons for the five species addressed by this amendment. Gag, red grouper, and red snapper are managed under IFQ programs administered through the Southeast Regional Office (SERO) of the National Marine Fisheries Service (NMFS). Primary commercial gear types in the fishery are vertical lines (handlines and bandit gear) and bottom longlines.

⁸ http://gulfcouncil.org/fishery-management/

Table 3.1.1.1. Commercial minimum size limits (total length [TL] or fork length [FL]), trip limits, and closed seasons for five species of reef fish in the Gulf.

Stock	Minimum size	Trip limit	Fixed Closed Season
Gag	22 inches TL	Managed under IFQ	None*
Red grouper	18 inches TL	Managed under IFQ	None*
Red snapper	13 inches TL	Managed under IFQ	None*
Gray triggerfish	14 inches FL	12 fish	June 1-July 31**
Greater amberjack	36 inches FL	None	March 1-May 31**

^{*}These species are managed under an IFQ program. Thus, the season is open as long as a vessel has allocation available for harvesting gag, red grouper, or red snapper.

With regard to commercial operators harvesting reef fish from the Gulf exclusive economic zone (EEZ), their fishing vessels must have a Gulf commercial reef fish permit, which is a limited access permit. As of November 13, 2017, a total of 844 vessels have the permit. Only vessels with a valid Gulf reef fish commercial permit can harvest reef fish in the Gulf EEZ, and those that use bottom longline gear in the Gulf EEZ east of 85°30'W. longitude must also have a valid eastern Gulf longline endorsement. As of November 13, 2017, 62 of the permit holders have the longline endorsement, and all but one of the endorsement holders have a mailing address in Florida. In addition to these restrictions, operators of reef fish fishing vessels who want to harvest red snapper or grouper and tilefish species, must participate in the red snapper or grouper-tilefish IFQ programs. To harvest IFQ species, a vessel permit must be linked to an IFQ account and possess sufficient allocation for the species to be harvested. IFQ accounts can be opened and valid permits can be linked to IFQ accounts at any time during the year. Eligible vessels can receive allocation from other IFQ program participants.

This amendment is restricted to the recreational sector; therefore, no additional description of the commercial sector is included.

3.1.2 Recreational Sector

The recreational sector is currently managed through, but not limited to, ACLs, ACTs, AMs, size limits, bag limits, seasonal closures, time and area/gear restrictions, and gear requirements. Table 3.1.2.1 summarizes the management measures for the five species considered in this amendment. State regulations are different than federal regulations in some cases. In those circumstances (e.g., red snapper seasons), federally permitted fishermen must obey the regulations for the waters they are fishing in. For federal waters, if landings meet or are projected to meet the species' ACL, then the season will be closed. The primary gear type in the fishery is vertical line gear (rod-and-reel).

^{**}In addition, an in-season closure can occur prior to December 31 if a species' ACL is caught or is projected to be caught.

Table 3.1.2.1. Recreational minimum size limits, bag limits, and seasons for five species of reef fish in the Gulf. Season closures can occur prior to the end of the fishing season if a species' quota is caught or is projected to be caught.

Stock	Minimum size	Daily bag limit	Season
Gag	24 inches TL	2 per person within 4 grouper aggregate bag limit	June 1-December 31
Red grouper	20 inches TL	2 per person within 4 grouper aggregate bag limit	February 1-March 31 when fishing beyond 20 fathom break
Red snapper	16 inches TL	2 per person	Open June 1, close when ACT is projected to be met
Gray triggerfish	14 inches FL	2 per person within 20 reef fish aggregate bag limit	January 1-July 31
Greater amberjack	34 inches FL	1 per person	June 1-July 31*

^{*} The Gulf Council has approved a framework action that would change the fishing season to August 1-July 31.

Private recreational fishing vessels are not required to have a federal permit to harvest reef fish from the Gulf EEZ. However, anglers aboard these vessels must either be federally registered or licensed in states that have a system to provide complete information on the states' saltwater anglers to the national registry.

Any for-hire fishing vessel that takes anglers into the Gulf EEZ where anglers harvest reef fish must have a federal limited-access charter vessel/headboat (for-hire) permit for reef fish that is specifically assigned to that vessel. As of November 14, 2017, there were 1,278 vessels with a for-hire permit and another 32 with a historical captain for-hire permit. Approximately 58% of the for-hire reef fish permits have mailing recipients in Florida. Texas recipients hold the second highest number of permits, with 17% (see Table 1.1.1). Since 2003, there has been a moratorium on the issuance of new federal reef fish for-hire permits. This means that participation in the federal for-hire component is capped; no additional federal permits are available.

Headboat Landings

Savolainen et al. (2012) surveyed the charter and headboat fleets in the Gulf. They found that most headboats target offshore species and fish in federal waters (81% of trips), largely due to vessel size and consumer demand. On average, 84% of trips targeted rig-reef species, while only 10% targeted inshore species and 6% pelagic species. Holland et al. (1999) reported approximately 40% of headboats did not target any particular species. The species groups targeted by the largest proportion of Gulf coast Florida headboats were snapper (60%), grouper (60%) and sharks (20%), with species receiving the largest percentage of effort being red grouper (46%), gag (33%), black grouper (20%), and red snapper (7%). For the other Gulf states, Sutton et al. (1999) reported that the majority of headboats targeted snapper (100%), king mackerel (85%), shark (65%), tuna (55%), and amberjack (50%). The species receiving the largest percentage of total effort by headboats in the four-state area were snapper (70%), king mackerel (12%), amberjack (5%), and shark (5%). Long-term recreational landings for the five

reef fish species considered in this amendment can be found in Section 2.2. Table 3.1.4 shows recent headboat landings for each species.

Table 3.1.4. Recent headboat landings (in pounds) for five species of reef fish

5.1.4. Recent neadboa	1.4. Recent headboat fandings (in pounds) for five species of feet fish.							
Species	Year	Landings		Species	Year	Landings		
Red Snapper	2012	724,078		Gag	2012	44,249		
	2013	445,276			2013	34,117		
	2014	382,289			2014	40,728		
	2015	580,226			2015	35,546		
	2016	526,575			2016	23,246		
Greater Amberjack	2012	99,680		Red Grouper	2012	83,324		
	2013	73,246			2013	77,542		
	2014	46,435			2014	45,107		
	2015	58,513			2015	50,621		
	2016	20,210			2016	56,851		
Gray Triggerfish	2012	18,706						
	2013	27,119						
	2014	8,693						
	2015	4,112						
	2016	29,576						

Source: SEFSC Recreational ACL Data (2013-2016; accessed Nov 2017. Headboat landings include expansions for missing trips.

Red snapper landings decreased substantially in 2014 because the federal recreational fishing season was only 9 days (Table 3.1.5). In 2015, the for-hire component was given a separate quota from the private angling component (GMFMC 2014a); consequently, the length of the for-hire fishing season increased in 2015 and 2016 similar to the length of the fishing seasons during 2011-2013.

Table 3.1.5. Length of state and federal red snapper recreational seasons in days. Separate seasons were set for private angling and federal for-hire vessels beginning in 2015.

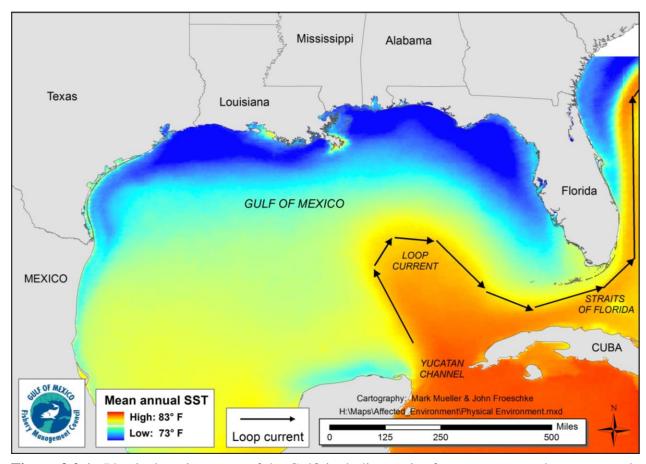
	State Seasons						eason	
Year	FL	AL	MS	LA	TX	Rec	Private	For-hire
2012	46	46	46	46	365	46	46	46
2013	58	42	42	113	365	42	42	42
2014	52	21	36	286	365	9	9	9
2015	70	41	118	215	365		10	44
2016	85	66	102	279	365		11	46

Fluctuations in greater amberjack ACLs are the result of AMs. In 2013, landings exceeded the ACL; therefore, the 2014 ACL was reduced by the amount of the overage. In 2015, the ACL went back to the original amount, and once again landings exceeded the ACL requiring an ACL reduction in 2016. In 2016, the ACL was exceeded again, resulting in another ACL reduction in 2017.

In 2013, an overage adjustment for gray triggerfish was implemented. This contributed to decreasing quotas for subsequent years as quota overages were deducted from the following year's ACL, leading to lowered quotas and thus, decreasing landings. The overage in 2016 was large enough to keep triggerfish recreational fishing closed for all of 2017 in federal waters.

Gag landings have decreased in recent years and have reached 50% or less of the recreational ACL for the past 4 years. A stock assessment update in 2016 indicated the Gulf gag stock is not overfished. Red grouper landings have fluctuated in the past 4 years; however, landings have remained at or below the ACL, and no overage adjustment has been necessary during that time.

3.2 Description of the Physical Environment


The Gulf has a total area of approximately 600,000 square miles (1.5 million km²), including state waters (Gore 1992). It is a semi-enclosed, oceanic basin connected to the Atlantic Ocean by the Straits of Florida and to the Caribbean Sea by the Yucatan Channel (Figure 3.2.1). Oceanographic conditions are affected by the Loop Current, discharge of freshwater into the northern Gulf, and a semi-permanent, anti-cyclonic gyre in the western Gulf. The Gulf includes both temperate and tropical waters (McEachran and Fechhelm 2005). Gulf water temperatures range from 54° F to 84° F (12° C to 29° C) depending on time of year and depth of water. Mean annual sea surface temperatures ranged from 73 ° F through 83° F (23-28° C) including bays and bayous (Figure 3.1.1) between 1982 and 2009, according to satellite-derived measurements⁹. In general, mean sea surface temperature increases from north to south with large seasonal variations in shallow waters.

The physical environment for Gulf reef fish is also detailed in the final environmental impact statements (EIS) for the Generic Essential Fish Habitat (EFH) Amendment, the Generic ACL/AM Amendment, and Reef Fish Amendment 40 (refer to GMFMC 2004; GMFMC 2011; GMFMC 2014) and are incorporated by reference and further summarized below. In general, reef fish are widely distributed in the Gulf, occupying both pelagic and benthic habitats during their life cycle. A planktonic larval stage lives in the water column and feeds on zooplankton and phytoplankton (GMFMC 2004). Juvenile and adult reef fish are typically demersal and usually associated with bottom topographies on the continental shelf (less than 100 m) which have high relief, i.e., coral reefs, artificial reefs, rocky hard-bottom substrates, ledges and caves, sloping soft-bottom areas, and limestone outcroppings. However, several species are found over sand and soft-bottom substrates. For example, juvenile red snapper are common on mud bottoms in the northern Gulf, particularly off Texas through Alabama. Also, some grouper (e.g., goliath,

^{9 (}NODC 2011: http://accession.nodc.noaa.gov/0072888)

red, gag, and yellowfin groupers) have been documented in inshore seagrass beds, mangrove estuaries, lagoons, and larger bay systems.

With respect to the National Register of Historic Places, there is one site listed in the Gulf. This is the wreck of the *U.S.S. Hatteras*, located in federal waters off Texas. Historical research indicates that over 2,000 ships have sunk on the Federal Outer Continental Shelf in the Gulf between 1625 and 1951; thousands more have sunk closer to shore in state waters during the same period. Only a handful of these have been scientifically excavated by archaeologists for the benefit of generations to come.¹⁰

Figure 3.2.1. Physical environment of the Gulf, including major feature names and mean annual sea surface temperature as derived from the Advanced Very High Resolution Radiometer Pathfinder Version 5 sea surface temperature data set (http://accession.nodc.noaa.gov/0072888)

 $^{^{10}}$ Further information can be found at: $\underline{\text{http://www.boem.gov/Environmental-Stewardship/Archaeology/Shipwrecks.aspx.}}$

3.3 Description of the Biological Environment

General Information on Reef Fish Species

Reef fish are widely distributed in the Gulf, occupying both pelagic and benthic habitats during their life cycle. Habitat types and life history stages can be found in more detail in Amendment 23 (GMFMC 2004c). In general, both eggs and larval stages are planktonic. Larval fish feed on zooplankton and phytoplankton. Gray triggerfish and gray snapper are exceptions, to this generalization as gray triggerfish lay their eggs in nests on the sandy bottom (Simmons and Szedlmayer 2012) and gray snapper larvae are found around submerged aquatic vegetation. Juvenile and adult reef fish are typically demersal, and are usually associated with bottom topographies on the continental shelf (less than 328 feet; less than 100 m) which have high relief, i.e., coral reefs, artificial reefs, rocky hard-bottom substrates, ledges and caves, sloping softbottom areas, and limestone outcroppings. However, several species are found over sand and soft-bottom substrates. Juvenile red snapper are common on mud bottoms in the northern Gulf, particularly from Texas to Alabama. Also, some juvenile snappers (e.g., mutton, gray, red, dog, lane, and yellowtail snappers) and groupers (e.g., goliath grouper, red, gag, and yellowfin groupers) have been documented in inshore seagrass beds, mangrove estuaries, lagoons, and larger bay systems (GMFMC 1981). More detail on hard bottom substrate and coral can be found in the FMP for Corals and Coral Reefs (GMFMC and SAFMC 1982).

Status of Reef Fish Stocks

The Reef Fish FMP currently encompasses 31 species (Table 3.3.1). Eleven other species were removed from the FMP in 2012 through the Generic ACL/AM Amendment (GMFMC 2011a). The NMFS Office of Sustainable Fisheries updates its Status of U.S. Fisheries Report to Congress¹¹ on a quarterly basis utilizing the most current stock assessment information. Stock assessments and status determinations have been conducted and designated for 12 stocks and can be found on the Council¹² and Southeast Data, Assessment, and Review (SEDAR)¹³ websites (Table 3.3.2). Of the 12 stocks for which stock assessments have been conducted, the fourth quarter report of the 2017 Status of U.S. Fisheries classifies one as overfished (greater amberjack) and two as undergoing overfishing (greater amberjack and gray triggerfish).

A stock assessment for Atlantic goliath grouper has been conducted, but upon review by the Scientific and Statistical Committee (SSC), the assessment was deemed not suitable for stock status and management advice (Table 3.3.3). Stock assessments were conducted for seven stocks using the Data Limited Methods Toolkit (DLMToolkit) although only lane snapper was able to have overfishing limit (OFL) and annual biological catch (ABC) limits set based on the limited data (Table 3.3.4).

¹¹ https://www.fisheries.noaa.gov/national/population-assessments/fishery-stock-status-updates

¹² www.gulfcouncil.org

¹³ http://sedarweb.org/

The status of both assessed and unassessed stocks, as of the writing of this report is provided in Table 3.3.1. However, it should be noted that greater amberjack, gray triggerfish, and red snapper are under rebuilding plans. Reef fish Amendment 44 (GMFMC 2017b), implemented December 21, 2017 modified the minimum stock size threshold for seven species in the FMP. Based on the fourth quarter report of the 2017 Status of U.S. Fisheries, red snapper and gray triggerfish are not overfished but rebuilding, because the biomass for the stock is currently estimated to be greater than 50% of B_{MSY} . The greater amberjack stock will remain classified as overfished.

Table 3.3.1. Status of species in the Reef Fish FMP grouped by family.

Common Name	Scientific Name	Stock Status
Family Balistidae – Trigg	erfishes	
gray triggerfish	Balistes capriscus	Not overfished, overfishing
Family Carangidae – Jacl	KS	
greater amberjack	Seriola dumerili	Overfished, overfishing
lesser amberjack	Seriola fasciata	Unknown if overfished, no overfishing
almaco jack	Seriola rivoliana	Unknown if overfished, no overfishing
banded rudderfish	Seriola zonata	Unknown
Family Labridae – Wrass	es	
*hogfish	Lachnolaimus maximus	Not overfished, no overfishing
Family Malacanthidae – 7	Filefishes	
tilefish (golden)	Lopholatilus chamaeleonticeps	Not overfished, no overfishing
blueline tilefish	Caulolatilus microps	Unknown
goldface tilefish	Caulolatilus chrysops	Unknown
Family Serranidae – Grou	ipers	
gag	Mycteroperca microlepis	Not overfished, no overfishing
red grouper	Epinephelus morio	Not overfished, no overfishing
scamp	Mycteroperca phenax	Unknown
black grouper	Mycteroperca bonaci	Not overfished, no overfishing
yellowedge grouper	**Hyporthodus flavolimbatus	Unknown if overfished, no overfishing
snowy grouper	**Hyporthodus niveatus	Unknown if overfished, no overfishing
speckled hind	Epinephelus drummondhayi	Unknown if overfished, no overfishing
yellowmouth grouper	Mycteroperca interstitialis	Unknown if overfished, no overfishing
yellowfin grouper	Mycteroperca venenosa	Unknown
warsaw grouper	**Hyporthodus nigritus	Unknown if overfished, no overfishing
***Atlantic goliath	Epinephelus itajara	Unknown if overfished, no overfishing
grouper		
Family Lutjanidae – Snap		
queen snapper	Etelis oculatus	Unknown if overfished, no overfishing
mutton snapper	Lutjanus analis	Not overfished, no overfishing
blackfin snapper	Lutjanus buccanella	Unknown if overfished, no overfishing
red snapper	Lutjanus campechanus	Not overfished, no overfishing
cubera snapper	Lutjanus cyanopterus	Unknown if overfished, no overfishing
gray snapper	Lutjanus griseus	Unknown if overfished, no overfishing
lane snapper	Lutjanus synagris	Unknown if overfished, no overfishing
silk snapper	Lutjanus vivanus	Unknown
yellowtail snapper	Ocyurus chrysurus	Not overfished, no overfishing
vermilion snapper	Rhomboplites aurorubens	Not overfished, no overfishing
wenchman	Pristipomoides aquilonaris	Unknown if overfished, no overfishing

Notes: *The East Florida/Florida Keys hogfish stock is considered overfished and undergoing overfishing.

**In 2013 the genus for yellowedge grouper, snowy grouper, and warsaw grouper was changed by the American Fisheries Society from *Epinephelus* to *Hyporthodus* (American Fisheries Society 2013).

^{***}Atlantic goliath grouper is a protected grouper and benchmarks do not reflect appropriate stock dynamics. In 2013 the common name was changed from goliath grouper to Atlantic goliath grouper by the American Fisheries Society to differentiate from the Pacific goliath grouper, a newly named species (American Fisheries Society 2013).

Table 3.3.2. Reef fish stock that have assessments and accepted status determinations.

Stock	Stock S	Status	Most Recent SSC	Most Recent Stock
	Overfishing	Overfished	Determination	Assessment
black grouper	N	N	Mar 2010	SEDAR 19 2010
yellowedge grouper	N	N	May 2011	SEDAR 22 2011b
tilefish (golden)	N	N	May 2011	SEDAR 22 2011a
yellowtail snapper	N	N	Oct 2012	SEDAR 27A 2012
red snapper	N	N	Jan 2015	SEDAR 31 Update 2015
hogfish	N	N	Oct 2014	SEDAR 37 2013
mutton snapper	N	N	May 2015	SEDAR 15A Update 2015
gray triggerfish	Y	N	Jan 2016	SEDAR 43 2015
red grouper	N	N	Jan 2016	SEDAR 42 2015
vermilion snapper	N	N	Jun 2016	SEDAR 45 2016
gag	N	N	Jan 2017	SEDAR 33 Update 2016b
greater amberjack	Y	Y	Mar 2017	SEDAR 33 Update 2016a

A stock assessment has been conducted for Atlantic Goliath grouper (Table 3.3.3). The Council's SSC accepted the assessment's general findings that the stock was not overfished nor experiencing overfishing. The Atlantic Goliath grouper assessment was deemed not suitable for stock status and management advice but was determined to not be experiencing overfishing based on annual harvest remaining below the OFL. There has been no assessment-based status determination.

Table 3.3.3. Reef fish stocks deemed unsuitable by the SSC for stock status and management advice.

Stock	Stock Status		Most Recent SSC	Most Recent Stock
	Overfishing	Overfished	Determination	Assessment
Atlantic goliath grouper	N	unknown	Sep 2016	SEDAR 47 2016

For SEDAR 49, data limited methods were attempted for seven reef fish stocks listed in Table 3.3.4. This method allows the setting of OFL and ABC based on limited data and life history information, but does not provide assessment-based status determinations. Data were requested for the following stocks but it was determined not enough information was available to complete an assessment even using the DLMToolkit. These stocks are not experiencing overfishing based on annual harvest remaining below the OFL, but no overfished status determination has been made (Table 3.3.4). Lane snapper was the only stock with adequate data to be assessed using the DLMToolkit methods resulting in OFL and ABC recommendations by the SSC.

Table 3.3.4. Data limited assessments were attempted for the seven reef fish stock below, but no stock status determinations were made.

Stock	Stock Status		Most Recent SSC	Most Recent SSC
	Overfishing	Overfished	Determination	Workshop
lane snapper	N	unknown	Mar 2017	SEDAR 49 2016
wenchman	N	unknown	Mar 2017	SEDAR 49 2016
almaco jack	N	unknown	Mar 2017	SEDAR 49 2016
lesser amberjack	N	unknown	Mar 2017	SEDAR 49 2016
speckled hind	N	unknown	Mar 2017	SEDAR 49 2016
snowy grouper	N	unknown	Mar 2017	SEDAR 49 2016
yellowmouth grouper	N	unknown	Mar 2017	SEDAR 49 2016

Red Snapper Life History and Biology

Red snapper demonstrate the typical reef fish life history pattern. Eggs and larvae are pelagic while juveniles are found associated with bottom features or over barren bottom. Spawning occurs over firm sand bottom with little relief away from reefs during the summer and fall. Females mature as early as 2 years and most are mature by 4 years (Schirripa and Legault 1999). Red snapper have been aged up to 57 years. Until 2013, most red snapper caught by the directed fishery were 2 to 4 years old, but the SEDAR 31 benchmark stock assessment suggested that the age and size of red snapper in the directed fishery has increased (SEDAR 31 2013). A more complete description of red snapper life history can be found in the Generic Essential Fish Habitat (EFH) Amendment (GMFMC 2004).

Status of the Red Snapper Stock

SEDAR 31 Benchmark Stock Assessment

Commercial harvest of red snapper from the Gulf began in the mid-1800s (Shipp and Bortone 2009). In the 1930s, party boats built exclusively for recreational fishing began to appear (Chester 2001). The first stock assessment conducted by NMFS in 1986 suggested that the stock was in decline (Parrack and McLellan 1986) and since 1988, the stock biomass has been below threshold levels (Goodyear 1988).

The most recent benchmark red snapper stock assessment was completed in 2013 (SEDAR 31 2013). The primary assessment model selected for the Gulf red snapper stock assessment was Stock Synthesis (Methot 2010). Stock Synthesis is an integrated statistical catch-at-age model which is widely used for stock assessments in the United States and throughout the world. Commercial landings data included commercial handline and longline landings from the accumulated landings system (ALS) from 1964 through 2011. For landings between 1880 and 1963, previously constructed historical landings were used. Total annual landings from the commercial IFQ program for years 2007-2011 were used to reapportion 2007-2011 ALS data across strata. Recreational landings data included the Marine Recreational Information Program (MRIP)/Marine Recreational Fishery Statistics Survey from 1981-2011, SRHS for 1981-2011,

and Texas Parks and Wildlife Department (TPWD) survey. For the years 2004-2011, MRIP landings are available. For earlier years, Marine Recreational Fishery Statistics Survey data were calibrated to MRIP estimates using a standardized approach for calculating average weight that accounts for species, region, year, state, mode, wave, and area.

Standardized indices of relative abundance from both fishery dependent and independent data sources were included in the model. The fishery dependent indices came from the commercial handline fleet, recreational headboats, and recreational private angling/federal for-hire components. Fishery independent indices came from the Southeast Area Monitoring and Assessment Program (SEAMAP) bottom trawl survey, SEAMAP reef fish video survey, NMFS bottom longline survey, and the SEAMAP plankton survey.

Red snapper discards in the Gulf were calculated from data collected by the self-reported commercial logbook data and the NMFS Gulf reef fish observer program. In addition to these directed fisheries discards, estimates of red snapper bycatch from the commercial shrimp fleet were also included.

The results of the SEDAR 31 assessment, including an assessment addendum that was prepared after a review of the SEDAR Assessment Panel Report by the SEDAR Review Panel, was presented to the SSC in May 2013. Under the base model, it was estimated that the red snapper stock has been overfished since the 1960s.

Recent stock status was estimated relative to two possible proxies for F_{MSY}: F_{SPR26%} (i.e., the fishing mortality rate that would produce an equilibrium spawning potential ratio [SPR] of 26%) and F_{MAX}, which corresponded to F_{SPR20.4%} (i.e., the fishing mortality rate that would produce an equilibrium SPR 20.4%). A proxy of F_{SPR26%} was previously used as the overfishing and F_{MSY} proxy in SEDAR 7 (2005) and the SEDAR 7 update assessment (2009). F_{MAX} was evaluated as an alternative proxy because at spawner-recruit steepness values near 1.0, such as the value of 0.99 fixed in the red snapper assessment, F_{MAX} approximates the actual estimate of F_{MSY} . However, the actual estimate of F_{MSY} is sensitive to the parameters of the spawner-recruit relationship. The SSC did not have confidence in using the direct F_{MSY} estimate because the spawner-recruit function is poorly estimated and data exist for a very limited range of potential spawning stock biomass (SSB) values for the stock. In addition, the SSC felt that the equivalent SPR for F_{MAX} (20.4%) was inappropriately low for species with life history parameters similar to red snapper. The SSC felt that the F_{SPR26%} proxy, while still somewhat low for species with life history parameters similar to red snapper, was more realistic than the 20.4% SPR associated with F_{MAX}. Furthermore, the F_{SPR26%} proxy is consistent with the current fishery management plan (FMP) and rebuilding plan for red snapper.

SSB was estimated to remain below both the minimum stock size threshold (MSST) and the spawning stock size associated with maximum sustainable yield (SSB_{MSY proxy}) using either proxy described above. Therefore, the SSC concluded that the stock remains overfished. With respect to overfishing, the current fishing mortality rate (geometric mean of 2009-2011) was estimated to be below both F_{MSY} proxies. Therefore, the SSC estimated the stock was not experiencing overfishing as of 2011.

SEDAR 31 Update Assessment

In January 2015, NMFS presented an update of the SEDAR 31 assessment to the SSC (GMFMC 2015). The methods used were the same as SEDAR 31, except for instances when the assessment team was responding to specific terms of reference from the Council. The SEDAR 31 red snapper base model was used with data updated through 2013. Recreational catch data was adjusted using methods from the September 2014 MRIP Calibration workshop and the rescaled MRIP landings were used. A selectivity block (2011-2013) was applied on all recreational fleets to accommodate recent changes in fishing behavior that indicated a shift in selectivity to older (heavier) fish in recent years. The revised recreational landings were generally 10% to 20% higher than in SEDAR 31, but the revised discards also showed proportionately higher rates than in SEDAR 31. The results of the update assessment indicated that Gulf-wide, the stock biomass estimates are continuing to increase, but remain below the management target of 26% SPR. Stock biomass is continuing to increase in the western Gulf, but in the eastern Gulf, stock biomass estimates have shown a slight downward trend in recent years, which resulted from strong year-classes exiting the stock, as well as recent low recruitment estimates.

The combined east and west stock biomass estimates, while increasing, remain below the MSST, indicating that the stock remains in an overfished condition. However, estimated fishing mortality remains below the maximum fishing mortality threshold, indicating that overfishing was not occurring as of 2013.

Greater Amberjack Life History and Biology

Seasonal Aspects of Reproduction

Studies conducted in the Gulf have estimated that peak spawning occurs during the months of March and April (Wells and Rooker 2002; Murie and Parkyn 2008). There is also evidence for separate and limited connectivity of the greater amberjack population structure within the Gulf, where the northern Gulf population does not appear to mix often with the Florida Keys population (Gold and Richardson 1998, Murie et al. 2011).

Early studies on greater amberjack conducted in south Florida indicated that maximum gonad development occurred in the spring months (Burch 1979) although larvae and small juveniles were reported year round in the entire Gulf (Aprieto 1974). Harris et al. (2007) provided information on reproduction in the southeastern U.S. Atlantic using fishery-dependent and fishery-independent samples from 2000 - 2004. Greater amberjack in spawning condition were captured from North Carolina to the Florida Keys; however, spawning was concentrated in areas off south Florida and the Florida Keys. Harris et al. (2007) documented evidence of spawning from January - June with peak spawning during April and May within this area. They estimated a spawning season of approximately 73 days off south Florida, with a spawning period of 5 days, and that an individual female could spawn as frequently as 14 times during the season. Wells and Rooker (2002) conducted studies in the northwestern Gulf on larval and juvenile fish associated with floating *Sargassum* spp. Based on the size and season when larvae and juvenile

greater amberjack were captured, they suggested peak spawning season occurred in March and April although they did find that peak spawning began as early as February off Texas. Murie and Parkyn (2008) provided updated information on reproduction of greater amberjack throughout the Gulf using fishery-dependent as well as fishery-independent data from 1989-2008 (it is important to note that fishery-dependent sampling has not been year round). They reported peak spawning occurring during March and April, and by May, they documented low gonad weights indicating spawning was ending.

Status of the Greater Amberjack Stock

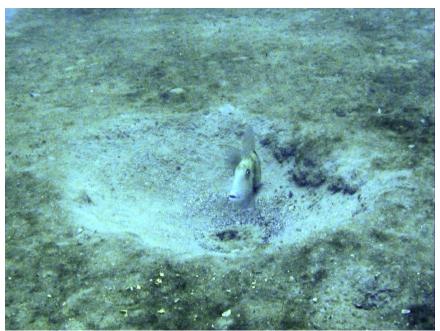
Secretarial Amendment 2 (GMFMC 2002) to the Reef Fish FMP established a rebuilding plan for Gulf greater amberjack (*Seriola dumerili*) based on a stock assessment conducted in 2000 (Turner et al. 2000). The Turner et al. (2000) assessment determined the greater amberjack stock to be overfished and undergoing overfishing as of 1998. Management measures were implemented in January 1997 to reduce the recreational bag limit from three fish to one fish per person per day. In January 1998, a March through May commercial season closure was implemented; however, this closure was not incorporated into the 2000 stock assessment. The projected effects of these management measures were expected to eliminate overfishing; therefore, no new management measures to further restrict effort were implemented. This rebuilding plan was implemented in 2002, and the management measures were expected to rebuild the greater amberjack stock within 7 years (by 2009), well within the maximum time frame of 10 years (by 2012) as specified by the Magnuson-Stevens Act.

In 2006, a SEDAR update stock assessment was completed that determined the greater amberjack stock was not recovering at the rate previously projected. The stock continued to be overfished and was experiencing overfishing (SEDAR 9 2006b). The Council and NMFS developed and implemented Amendment 30A in 2008 in response to the stock assessment results and the requirement to end overfishing and rebuild the stock by 2012 (GMFMC 2008a). The minimum reduction required to rebuild the stock by 2012 was 40% of current fishing mortality. The total allowable catch (TAC) implemented by the final rule for Amendment 30A was 1,871,000 lbs whole weight (ww) for 2008 through 2010 (GMFMC 2008a). Amendment 30A also established quotas for the recreational and commercial sectors equal to 1,368,000 and 503,000 lbs ww, respectively. Amendment 30A also required sector-specific accountability measures (AMs) such that if either sector exceeded its allocated portion of the TAC, the Regional Administrator (RA) would close that sector for the remainder of the year. Additionally, if a sector's landings exceed that sector's share of the TAC, the RA would reduce the fishing season by the amount of time necessary to account for the overage in the following fishing year.

A 2010 update stock assessment also determined that the stock remained overfished and was continuing to experience overfishing. In December 2012, Amendment 35 (GMFMC 2012c) set the ACLs equal to the acceptable biological catch (ABC) and reduced the commercial ACLs, (previously called the TAC), to 1,780,000 lbs ww in an effort to end overfishing and rebuild the stock. The recreational ACL was set at 1,299,000 lbs ww, and a commercial ACL was set at 481,000 lbs ww, based on the sector allocation (73% recreational, 27% commercial) established in Amendment 30A (GMFMC 2008a). Annual catch targets (ACTs) (equivalent to quotas for

greater amberjack) were established at 1,130,000 lbs ww for the recreational sector and 409,000 lbs ww for the commercial sector.

A greater amberjack stock assessment (SEDAR 33 2014) was completed and reviewed by the Council's SSC at its June 2014 meeting. The SSC used the ABC Control Rule to recommend the following ABCs for a time period of four years, beginning in 2015, equivalent to 75% of maximum fishing mortality threshold (MFMT), to end overfishing and rebuild the stock.


In 2015, the Council developed a framework action to reduce the ACL from 1,780,000 lbs ww to the SSC's ABC recommendation of 1,720,000 lbs ww, from 2015 through 2018. These new catch levels were implemented in a final rule that was effective on January 4, 2016. However, the most recent ABC recommendation from the SSC exceeds the current OFL established in the 2016 framework action and requires modification to end overfishing and rebuild the stock. In 2016, the greater amberjack stock assessment update to SEDAR 33 was completed and reviewed by the SSC at its March 2017 meeting. The SSC accepted the greater amberjack update assessment as the best scientific information available and concluded that greater amberjack was still overfished and undergoing overfishing and the stock would not be rebuilt by 2019 as previously projected. The SSC provided new annual OFLs and ABCs for a period of three years, beginning in 2018, equivalent to yield at 75% of the MFMT, based on the results of the update assessment. The results also indicated that Gulf greater amberjack had been overfished in all years since 1987 and has been undergoing overfishing since 1985. These results are generally consistent with the SEDAR 33 benchmark assessment. However, the update assessment produced lower estimates of spawning stock biomass and higher estimates of fishing mortality in the most recent years.

Gray Triggerfish Life History and Biology

There have been relatively few age and growth studies on gray triggerfish; however, this species is estimated to live up to 11 years, with 16 being the maximum age recorded (Hood and Johnson 1997; Wilson et al. 1995; Ingram 2001; Panama City National Marine Fisheries Service (NMFS) Database, accessed 2012). Gray triggerfish is estimated to grow rapidly within the first year of life then growth slows for both sexes combined (Hood and Johnson 1997; Ingram 2001; Wilson et al. 1995; SEDAR 9 2006a). The maximum length of gray triggerfish recorded was 27-28 inches fork length (697-725 mm FL) by Hood and Johnson (1997) and samples processed from 2003 through 2010 at the Panama City Laboratory from both fishery-dependent and fishery-independent samples in the Gulf. The maximum weight documented from the Panama City NMFS Database, accessed in 2012, was 13.8 lbs gutted weight (6.26 kg gw). Male gray triggerfish reach significantly larger sizes than females (Hood and Johnson 1997; Ingram 2001; Simmons and Szedlmayer 2012).

Gray triggerfish spawn as early as May and as late as August, with peak spawning in June and July in the Gulf and South Atlantic Bight (Wilson et al. 1995; Hood and Johnson 1997; Ingram 2001; Moore 2001; Simmons and Szedlmayer 2012). Both sexes are reproductively mature by age-2, 10 inches FL (250 mm FL). At this size (~10-inches FL), some males are age-1 and all females are age-2 (Wilson et al. 1995; Ingram 2001). Male and female gray triggerfish have a

combination of atypical spawning behaviors compared to most marine fishes (i.e., pelagic broadcast spawners) managed by the Council. Male gray triggerfish establish territories, build demersal nests, and form harems (one male and several females) during the spawning season (Simmons and Szedlmayer 2012). Gray triggerfish form harems 50% of the time at sites with active nests, a mean sex ratio of 1:4.2 male to females on the reef, while at other reefs without spawning (lack of active nests) the mean sex ratio is 1:1.3 male to females. After fertilization of the eggs, female gray triggerfish provide parental care of the eggs (Figure 3.1.1), while the male defends his territory and courts other female gray triggerfish on the reef (Simmons and Szedlmayer 2012).

Figure 3.3.1. Underwater photograph of a female gray triggerfish guarding eggs in a nest in the northern Gulf of Mexico.

Source: Simmons and Szedlmayer 2012.

The eggs are small average size (0.62 mm) and laid in a gelatinous matrix in the bottom of the nest. Eggs hatch 24 to 48 hours after fertilization and gray triggerfish larvae move up into the water column (Simmons and Szedlmayer 2013). Large numbers of larval and juvenile gray triggerfish are found associated with *Sargassum* spp. mats in late summer and fall (Dooley 1972; Fahay 1975; Bortone et al. 1977; Wells and Rooker 2004). After 4 to 7 months in the pelagic zone, juvenile gray triggerfish recruit to benthic substrate (Simmons and Szedlmayer 2011). Adult gray triggerfish are closely associated with both natural and artificial reefs (Johnson and Saloman 1984; Frazer and Lindberg 1994; Vose and Nelson 1994; Kurz 1995; Ingram 2001; Lingo and Szedlmayer 2006; Simmons and Szedlmayer 2011). Diet studies on juvenile and adult gray triggerfish, after recruitment to benthic structure, determined they consume a wide variety of invertebrates such as: barnacles, bivalves, polychaetes, crustaceans, echinoderms, and isopods (Vose and Nelson 1994; Kurz 1995). Adult gray triggerfish (mean size tagged = 13.6 inches FL (347 mm FL)) are estimated to have high site fidelity (Ingram and Patterson 2001). In a mark-recapture study completed in the northern Gulf, 28 out of the 42 recaptures were made at

67

the site of release (n = 206 tagged gray triggerfish; Ingram and Patterson 2001). Herbig and Szedlmayer (2016) recently completed an internal transmitter tagging paper on gray triggerfish and found that adult gray triggerfish have 64% site fidelity, staying close to the reef ((35.9 m (108 ft); n=13)) and have high reef residency (greater than 57 weeks). Core area movements were reduced in the winter (January through May) and increase in June at the start of the spawning season; however, the greatest movement was documented during the months after spawning from September through November (Herbig and Szedlmayer 2016). This daytime movement may be due to foraging and then resting at night in the reef, potentially for protection from predators. (Herbig and Szedlmayer 2016). This behavior has been documented for other species of Balistidae.

Stock Status Gray Triggerfish

A standard assessment (SEDAR 43 2015) of Gulf gray triggerfish was completed and reviewed by the SSC in October 2015. The assessment indicated that gray triggerfish was no longer undergoing overfishing, but remains overfished. On November 2, 2015, NMFS notified the Council that the gray triggerfish stock was not making adequate progress toward rebuilding. Within 2 years of this notification, the Council must prepare and implement a plan amendment or proposed regulations for a plan to rebuild the stock as quickly as possible, but not to exceed 10 years. The Council developed a rebuilding plan in 2017 and it is slated for implementation in January 16, 2018.

A benchmark stock assessment was conducted in October 2006 for the Gulf gray triggerfish stock (SEDAR 9 2006a). The assessment used the two scenarios of a Stock Production Model Incorporating Covariates and the State-Space Age-Structured Production Model (SSASPM). The assessment results indicated the stock was both overfished and experiencing overfishing (SEDAR 9 2006a). In October 2006, NMFS notified the Council that the gray triggerfish stock was overfished and experiencing overfishing. This required that the Council take action to end overfishing and develop a rebuilding plan.

In response, the Council submitted Reef Fish Amendment 30A (GMFMC 2008a) that established a stock rebuilding plan beginning in 2008 as required by the Magnuson-Stevens Act.

An update stock assessment was conducted for Gulf gray triggerfish in 2011 (SEDAR 9 Update 2011b). The SSASPM from the 2006 gray triggerfish benchmark assessment (SEDAR 9 2006a) was applied and three scenarios were explored: 1) re-run the same model but with updated landings, catch-per-unit-effort series including 2010, and updated indices of abundance; 2) additional updated age-length information; and 3) updated shrimp trawl bycatch and effort data.

The Council's SSC reviewed the 2011 update assessment and accepted the second and third model scenarios listed above that used the updated age and length data, and the shrimp trawl bycatch and effort data. At that time the status determination criteria and the estimated rebuilding timeframes were based on future recruitment adhering to the MSY proxy. The MSY proxy is defined as the fishing mortality rate at 30% spawning potential ratio (F_{30% SPR}). Future yields are normally based on recruitment projections that depend in part on the spawner-recruit

curve developed in the assessment. At the time the update assessment was completed, gray triggerfish recruitment had been at low levels relative to the spawner-recruit curve (SEDAR 9 Update 2011b). The reason for low recruitment was unknown. Further, it was unknown whether recruitment in the near future will remain at these low levels or revert back to the levels projected by the spawner-recruit curve. At that time, the SSC set the ABC based on a low recruitment time period (i.e., 2005 through 2009) for 2012 and 2013 of 305,300 lbs ww¹⁴. The corresponding OFL defined by the SSC was the yield at F_{30%SPR}, equal to 401,600 lbs ww for these years. Results from the update assessment showed that the gray triggerfish stock was continuing to experience overfishing and the stock was overfished. In a March 2012 letter, NMFS informed the Council that the gray triggerfish stock was continuing to experience overfishing and was not making adequate progress to recover within the specified rebuilding period (NMFS 2012). In response to this letter, the Council requested an interim rule for gray triggerfish be prepared for its April 2012 meeting that would reduce the recreational ACL to 241,200 lbs ww and the recreational ACT to 217,100 lbs ww. The commercial ACL was reduced to 64,100 lbs ww and the commercial ACT (quota) was reduced to 60,900 lbs ww. The interim rule also established in-season closure authority for the recreational sector based on the ACT. Therefore, if the recreational gray triggerfish ACT is reached or projected to be reached within a fishing year, the Assistant Administrator for Fisheries can close the recreational sector from harvesting gray triggerfish for the rest of the year (78 FR 27084). Amendment 30A (GMFMC 2008a) had already established in-season closure authority for the commercial sector based on the ACT (quota). Following implementation of the interim rule in May 2012, the recreational sector was closed on June 11 and the commercial sector was closed on July 1. The interim rule reduced fishing levels until long-term management measures were implemented through Amendment 37. On June 10, 2013, NMFS implemented Amendment 37 (GMFMC 2012a).

Red Grouper Life History and Biology

In the Gulf, red grouper are commonly caught from Panama City, Florida, to the Florida Keys along the inner to mid-continental shelf in depths ranging from 2 to over 120 m (Moe 1969). Based on reported commercial landings, the Southeast Fishery Science Center's (SEFSC) Headboat Survey, and the Marine Recreational Fisheries Statistics Survey (MRFSS), red grouper are infrequently caught in the western Gulf. The species inhabits flat rock perforated with solution holes, caverns and crevices of limestone reef, and hard bottom areas (Moe 1969; Bullock and Smith 1991). Juveniles live in shallow water nearshore reefs until reaching approximately 16 inches (40 cm), when they become sexually mature and move offshore (Moe 1969). Red grouper reach a maximum length and weight of 43 inches (110 cm total length) and 50.7 pounds. (23 kg) (Robins et al. 1986). Maximum age of red grouper in the Gulf of Mexico has been estimated at 25 years (SEDAR 12 2007). Clear determinations of size and age of maturity have been difficult for red grouper (Fitzhugh et al. 2006 and references cited therein). Fitzhugh et al. (2006) determined the size and age where 50% of individuals attained maturity was approximately 11 inches (28 cm total length) at age 2. Although previous estimates indicated that 50% of red grouper were mature by 5 years of age and 15-20 inches total length

¹⁴ http://gulfcouncil.org/resources/SSC_Reports.php

(40-50 cm total length) (Moe 1969; Collins et al. 2002). Red grouper are protogynous hermaphrodites, transitioning from females to males at older ages, and form harems for spawning (Dormeier and Colin 1997). Age and size at sexual transition is approximately 10.5 years and 30 inches total length (TL)(76.5 cm TL) (Fitzhugh et al. 2006). Red grouper spawn from February until mid-July with peak spawning occurring in the eastern Gulf of Mexico during March through May (Fitzhugh et al. 2006). Over the last 25-30 years, there has been little change in the sex ratio of red grouper, likely because they do not aggregate (Coleman et al. 1996).

Status of the Red Grouper Stock

The most recent benchmark stock assessment for red grouper (SEDAR 12 2007) was completed in early February 2007. The assessment used the Age-Structured Assessment Program model (ASAP) (Legault and Restrepo 1999) that was the basis for the 2002 assessment and included data from 1986 through 2005. Approximately 99% of the landings were from the west coast of Florida and the rest were from Alabama. The minimum stock size threshold and maximum fishing mortality threshold were defined for red grouper in Secretarial Amendment 1 as (1-M)*SS_{MSY} and F_{MSY}, respectively. The red grouper stock assessment concluded that spawning stock size exceeded SS_{MSY} starting in 1999. This compares reasonably well with the results of the 2002 assessment which estimated the stock would be rebuilt by 2003 using a stock-recruit steepness relationship of 0.8, which is similar to the 0.84 estimated by the 2007 assessment. Recovery of the red grouper stock accelerated between 2001 and 2005 as a result of another very strong recruitment year class that occurred in 2000. Additionally, changes in the treatment of natural mortality during the SEDAR 12 assessment resulted in slightly more optimistic results when compared to the 2002 stock assessment. Fishing mortality on red grouper declined below maximum fishing mortality threshold starting in 1995 and has fluctuated but remained below maximum fishing mortality threshold with little trend through 2005. In 2005, fishing mortality was just below the target fishing mortality level of Foy.

The 2009 update stock assessment of the red grouper stock in the Gulf of Mexico (SEDAR 9 2009a) was conducted using the same model as the 2007 assessment, but with catch data and indices of abundance updated through 2008. After reviewing several model runs with varied parameter inputs, the SSC accepted the model run titled "Red Tide Model with Constant Catchability". This model run allowed the natural mortality rate for 2005, a year when there was an extensive red tide event along the West Florida Shelf, to adjust above the base natural mortality rate. The best-fit result indicated that an additional mortality for red grouper corresponding to approximately 20% of the stock occurred in 2005. The stock was found to be neither overfished or undergoing overfishing. However, the stock has declined since 2005, much of which was attributed to an episodic mortality event in 2005 (most likely associated with red

_

¹⁵ E-mail from Clay Porch (NMFS Southeast Fisheries Science Center) to Steven Atran (Gulf Council staff) dated June 24, 2009. There is confusion among some members of the public that the assessment claimed that 30% of the grouper were killed due to red tide. Dr. Porch's e-mail states that "the estimate of the instantaneous episodic natural mortality rate was 0.3, and that this translates roughly to something like 30% of the stock being killed (I emphasized at the time that it wasn't exactly 30%). Later during the meeting John (Walter) calculated the actual percentage for red grouper and it was a little over 20% (which I relayed to the AP, and I think the SSC, later on Tuesday)".

tide). The 2010 OFL or the yield associated with F_{MSY} for this model was estimated at 6.43 million pounds and the optimum yield (OY), calculated from the Council's default definition as the yield at 75% of F_{MSY} , was estimated at 4.913 for 2010.

The SSC reviewed the 2009 assessment update in June 2009. The model projection used actual catches through 2008, and assumed that the entire total allowable catch (TAC) would be filled in 2009. However, given that the TAC had not been filled in recent years, and that a longline emergency rule that restricted bottom longlines in order to protect sea turtles was in effect in 2009, the SSC felt that it was unlikely that the TAC would be filled in 2009. As a result, the SSC asked that projections of the red grouper and gag yield streams be rerun using updated landings estimates for 2009. These reruns were presented to the SSC in March 2010. The requested red grouper scenarios used the "Red Tide Model with Constant Catchability", used updated landings estimates for 2009 data, and either set the 2010 harvest level equal to the current TAC or equal to 2009 estimated landings (NMFS 2010). For red grouper, projections were provided for fishing at F_{MSY} and F_{OY}. Given that the 2010 landings, to date, appeared to better match 2009 harvest levels than in previous years, the SSC selected the model runs where the 2010 projected harvest was equal to the estimated 2009 harvest. Thus, the SSC recommended the 2011 overfishing level be set consistent with the Councils current definition of the yield associated with fishing at F_{MSY}, or 7.42 million pounds gutted weight (mp gw). Because the revised projections (NMFS 2010) did not provide probabilities of overfishing based on the different landing projection scenarios, the SSC selected a 2011 acceptable biological catch of 6.31 mp gw. This level is equal to 85% of the yield at F_{MSY} and was felt by the SSC to reduce the probability that overfishing might occur in 2011.

The yield projections were again rerun in late 2010 to incorporate new information on red grouper harvest, with the results presented to the SSC in January 2011 and again in March 2011. This new rerun used revised estimates of historical discards in the commercial sector that were based on newly available observer estimates from 2006 through 2008. Previous discard estimates were based on logbook records of bycatch, area fished, and fishery independent catchat-depth mortality analyses. The new rerun also accounted for a reduction in the commercial minimum size limit from 20 inches to 18 inches that was implemented in 2009 (Walter 2011). Give these changes, the January 2011 projection rerun indicated that the total allowable catch in the near term could be increased substantially. Based on the January rerun, the SSC recommended that the overfishing limit for red grouper be set at 7.93 mp gw (the equilibrium yield at the fishing mortality rate associated with harvesting at the equilibrium MSY, and the ABC be set at 7.93 mp gw (the equilibrium yield at the fishing mortality rate associated with harvesting at the equilibrium optimum sustainable yield [OSY]). Since the red grouper stock is not overfished, these equilibrium harvest levels are in effect for all years, until a new stock assessment is conducted.

In October 2015, the SEDAR 42 stock assessment for red grouper was completed using the Stock Synthesis model. SEDAR 42 found the red grouper stock was not undergoing overfishing and was not overfished. In order to develop ABC projections, the SSC determined P* using the ABC control rule Tier 1 spreadsheet. The P* analysis for red grouper resulted in a P* of 0.427, which the SSC rounded off to 0.43. Given that the red grouper stock is neither overfished nor

experiencing overfishing (as of 2013), SSC members felt it was appropriate to provide OFL and ABC recommendations for a 5-year period beginning in 2016. However, a decision was needed on how to handle landings for the years 2014-2015, which are not in the assessment. For 2014, final landings are available and will be used. For 2015 the SSC recommended that the assessment group use landings estimates based on the current quotas and ACLs.

Gag Life History and Biology

Gag is primarily caught on the west coast of Florida from Tampa Bay to the northern extent of the state (Schirripa and Goodyear 1994). Newly settled juveniles are estuarine-dependent, occurring in shallow seagrass beds during late spring and summer (Koenig and Coleman 1998; Strelcheck et al. 2003). At the onset of the first winter, juvenile gag migrate offshore, although some juvenile gag may remain in inshore waters during winter (Heinisch and Fable 1999). As gag mature, they move to deeper, offshore waters to spawn. Gag is a protogynous hermaphrodite, transitioning from females to males at older ages. Age and size at 50% sexual transition is approximately 11 years and 42-43 inches (108.5 - 110 cm) total length (SEDAR 10 2006). Maximum age is 31 years (Lombardi-Carlson et al 2006) and females are mature by 3.7 years of age and 23 inches (58.5 cm) total length (Fitzhugh et al 2006b). They form spawning aggregations at depths ranging from 160-400 feet (Coleman et al. 1996). In the eastern Gulf the spawning season is estimated to extend from late January to mid-April (with a peak in March) (Fitzhugh et al 2006b). Often immature female gag are found with spawning aggregations (Coleman et al. 1996). Gag can reach a maximum length of 54 inches (138 cm) total length and weight of 68 pounds (31 kg) (Lombardi et al 2006).

Oil from the Deepwater Horizon MC252 incident has affected at least one-third of the Gulf area at its maximum extent from western Louisiana east to the panhandle of Florida and south to the Campeche Bank in Mexico. However, at this point the affected areas are outside west Florida Shelf where gag are primarily found. Some surface oil may have occurred over the west Florida shelf in offshore waters, however, juvenile and adults are demersal and so likely were not affected. In addition, the oil would not have been present during the January to April spawning period when pelagic eggs and larvae could be susceptible to oil at the surface. Therefore, the effects of the oil on gag populations and gag essential fish habitat would likely be minimal.

Status of the Gag Stock

In 2009, a gag update assessment under the SEDAR program (SEDAR 10 Update 2009) indicated the gag stock size had declined since 2005. A large part of the decline was attributed to an episodic mortality event in 2005 (most likely associated with red tide) that resulted in 18% of the gag stock being killed in addition to the normal natural and fishing mortalities. The update assessment indicated the Gulf gag stock was both overfished and undergoing overfishing, and the Council was informed of this status determination in August 2009. In response, an interim rule was implemented on January 1, 2009 to reduce overfishing of gag, followed by permanent rules under Amendment 30B (GMFMC 2008b). Amendment 32 (GMFMC 2011b) subsequently established a formal rebuilding plan for gag not to exceed 10 years.

A benchmark assessment for gag completed in 2014 (SEDAR 33 2014a) indicated that the gag stock was no longer overfished or undergoing overfishing, and had rebuilt to above its MSY level. However, in 2014 a major red tide event occurred off of the Florida west coast in the region of greatest gag abundance. Due to uncertainty about the impact of this red tide event on the gag stock, the SSC recommended an ABC that assumed the 2014 red tide event would have the same impact on the gag stock as the 2005 event. The Council requested that the SSC reevaluate its ABC recommendation, and in January 2015 the SSC received an analysis of the red tide event from the Florida Fish and Wildlife Research Institute which indicated that the impact of the 2014 red tide event was only 4% to 7% of the 2005 event. With this new information, the SSC revised its recommended ABCs based on a projection scenario that assumed no significant impact from the 2014 red tide event.

Bycatch

Many of the reef fish species co-occur and can be incidentally caught when fishermen target certain species. In some cases, these fish may be discarded for regulatory reasons and thus are considered bycatch. Bycatch practicability analyses have been completed for red snapper (GMFMC 2004b, GMFMC 2007, GMFMC 2014, GMFMC 2015a), grouper (GMFMC 2008a, GMFMC 2010a, GMFMC 2011b, GMFMC 2012c), greater amberjack (GMFMC 2008b, GMFMC 2012a, GMFMC 2017a), and gray triggerfish (GMFMC 2012b). These analyses examined the effects of fishing on these species. In general, these analyses have found that reducing bycatch provides biological benefits to managed species as well as benefits to the fishery through less waste, higher yields, and less forgone yield. However, in some cases, actions are approved that can increase bycatch through regulatory discards such as increased minimum sizes and closed seasons. Under these circumstances, there is some biological benefit to the managed species that outweigh any increases in discards from the action.

Protected Species

The Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA) provides special protections to some species that occur in the Gulf. A very brief summary of these two laws and more information is available on NMFS Office of Protected Resources website. All 22 marine mammals in the Gulf are protected under the MMPA. Two marine mammals (sperm whales and manatees) are also protected under the ESA. Other species protected under the ESA that occur in the Gulf include sea turtles (Kemp's ridley, loggerhead (Northwest Atlantic Ocean distinct population segment [DPS]), green (South Atlantic and North Atlantic DPSs), leatherback, and hawksbill), three fish (Gulf sturgeon, smalltooth sawfish, and Nassau grouper), and seven corals (elkhorn, staghorn, pillar, rough cactus, lobed star, mountainous star, and boulder star). Critical habitat designated under the ESA for smalltooth sawfish, Gulf sturgeon, and the Northwest Atlantic Ocean DPS of loggerhead sea turtles also occur in the Gulf, though only loggerhead critical habitat occurs in federal waters.

The most recent biological opinion (Bi Op) on the Reef Fish FMP was completed on September 30, 2011. The Bi Op determined the continued authorization of the Gulf reef fish fishery

managed under the Reef Fish FMP is not likely to affect ESA-listed marine mammals or corals, and is not likely to jeopardize the continued existence of sea turtles (loggerhead, Kemp's ridley, green, hawksbill, and leatherback), or smalltooth sawfish. An incidental take statement was provided. Since issuing the Bi Op, in memoranda dated September 16, 2014, and October 7, 2014, NMFS concluded that the activities associated with the Reef Fish FMP are not likely to adversely affect four species of newly listed corals (rough cactus, lobed star, mountainous star, and boulder star) or critical habitat for the Northwest Atlantic Ocean loggerhead sea turtle DPS.

On April 6, 2016, NMFS and the U.S. Fish and Wildlife Service published a final rule removing the range-wide and breeding population ESA listings of the green sea turtle and listing eight DPSs as threatened and three DPSs as endangered, effective May 6, 2016. Two of the green sea turtle DPSs, the North Atlantic DPS and the South Atlantic DPS, occur in the Gulf and are listed as threatened. In addition, on June 29, 2016, NMFS published a final rule listing Nassau grouper as threatened under the ESA. NMFS has reinitiated consultation on the Reef Fish FMP to address the listing of green sea turtle DPSs and Nassau grouper and determined that allowing fishing under the Reef Fish FMP to continue during the reinitiation period is not likely to jeopardize the continued existence of these DPSs or Nassau grouper 16.

The following sections provide a brief overview of the marine mammals, sea turtles, and fish that may be present in or near areas where Gulf reef fish fishing occurs and their general life history characteristics. Since none of the listed corals or designated critical habitats in the Gulf are likely to be adversely affected by the Gulf reef fish fishery, they are not discussed further.

Marine Mammals

The 22 species of marine mammals in the Gulf include one sirenian species (a manatee), which is under U.S. Fish and Wildlife Service jurisdiction, and 21 cetacean species (dolphins and whales), all under NMFS' jurisdiction. Manatees primarily inhabit rivers, bays, canals, estuaries, and coastal waters rich in seagrass and other vegetation off Florida, but can occasionally be found in seagrass habitats as far west as Texas. Although most of the cetacean species reside in the oceanic habitat (depth greater than or equal to 200 m), the Atlantic spotted dolphin is found in waters over the continental shelf (20-200 m), and the common bottlenose dolphin (hereafter referred to as bottlenose dolphins) is found throughout the Gulf, including within bays, sounds, and estuaries; coastal waters over the continental shelf; and in deeper oceanic waters.

Sperm whales are one of the cetacean species found in offshore waters of the Gulf (greater than 200 m) and are listed endangered under the ESA. Sperm whales are the largest toothed whales and are found year-round in the northern Gulf along the continental slope and in oceanic waters (Waring et al. 2013). There are several areas between Mississippi Canyon and De Soto Canyon where sperm whales congregate at high densities, likely because of localized, highly productive habitats (Biggs et al. 2005; Jochens et al. 2008). There is a resident population of female sperm whales, and whales with calves frequently sighted there.

¹⁶ http://www.nmfs.noaa.gov/pr/laws/

Bryde's whales are the only resident baleen whales in the Gulf and are currently being evaluated to determine if listing under the ESA is warranted. Bryde's whales (pronounced "BREW-days") in the Gulf are currently restricted to a small area in the northeastern Gulf near De Soto Canyon in waters between 100 – 400 m depth along the continental shelf break, though information in the southern Gulf is sparse (Waring et al. 2013). On September 18, 2014, NMFS received a revised petition from the Natural Resource Defense Council to list the Gulf Bryde's whale as an endangered DPS. On April 6, 2015, NMFS found the petitioned action may be warranted and convened a Status Review Team to prepare a status review report. On December 8, 2016, NMFS published a proposed rule to list the Gulf Bryde's whale as endangered under the ESA (81 FR 88639). NMFS solicited public comments on the proposed rule and is developing a final rule.

Although they are all the same species, **bottlenose dolphins** in the Gulf can be separated into demographically independent populations called stocks. Bottlenose dolphins are currently identified by NMFS as 36 distinct stocks within the Gulf. These include 31 bay, sound and estuary stocks, three coastal stocks, one continental shelf stock, and one oceanic stock (Waring et al. 2013). Additional climatic and oceanographic boundaries delineate the three coastal stocks such that the Gulf Eastern Coastal Stock ranges from 84°W to Key West, FL, the Northern Coastal Stock ranges from 84°W to the Mississippi River Delta, and the Gulf Western Coastal stock ranges from the Mississippi River Delta to the Texas/Mexico border. Marine Mammal Stock Assessment Reports and additional information on these species in the Gulf are available on the NMFS Office of Protected Species website¹⁷.

The MMPA requires that each commercial fishery be classified by the number of marine mammals they seriously injure or kill. NMFS's List of Fisheries classifies U.S. commercial fisheries into three categories based on the number of incidental mortality or serious injury they cause to marine mammals. More information can be found on the website for the List of Fisheries and the classification process¹⁸.

NMFS classifies reef fish bottom longline/hook-and-line gear in the MMPA proposed 2018 List of Fisheries as a Category III fishery (82 FR 47424). This classification indicates the annual mortality and serious injury of a marine mammal stock resulting from any fishery is less than or equal to 1% of the maximum number of animals, not including natural mortalities, that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population. Dolphins are the only species documented as interacting with these fisheries. Bottlenose dolphins are a common predator around reef fish vessels. They prey upon bait, catch, and/or released discards of fish from the reef fish fishery.

Sea Turtles

Green, hawksbill, Kemp's ridley, leatherback, and loggerhead sea turtles are all highly migratory and travel widely throughout the Gulf and other open ocean waters. Several volumes exist that

¹⁷ http://www.nmfs.noaa.gov/pr/sspecies/

¹⁸ http://www.nmfs.noaa.gov/pr/interactions/fisheries/lof.html

cover the biology and ecology of these species (Lutz and Musick 1997; Lutz et al. 2003; Wynekan et al. 2013).

Green sea turtles are the largest of the hardshell marine turtles, growing to a weight of 350 lbs (159 kg) with a straight carapace length of greater than 3.3 ft (1 m). Hatchlings are thought to occupy pelagic areas of the open ocean and are often associated with Sargassum rafts (Carr 1987; Walker 1994). At approximately 20 to 25 cm carapace length, juveniles migrate from pelagic habitats to benthic foraging areas in nearshore tropical and subtropical waters (Bjorndal 1997). As juveniles move into benthic foraging areas a diet shift towards herbivory occurs. They consume primarily seagrasses and algae, but are also known to consume jellyfish, salps, and sponges (Bjorndal 1980, 1997; Paredes 1969; Mortimer 1981, 1982). The diving abilities of all sea turtles species vary by their life stages. The maximum diving depth of green sea turtles is estimated at 110 m (360 ft) (Frick 1976), but they are most frequently making dives of less than 20 m (65 ft) (Walker 1994). The time of these dives also varies by life stage. The maximum dive length is estimated at 66 minutes with most dives lasting from 9 to 23 minutes (Walker 1994).

Hawksbill sea turtles are small- to medium-sized (99-150 lbs on average [45-68 kg]) although females nesting in the Caribbean are known to weigh up to 176 lbs (80 kg) (Pritchard et al. 1983). Hatchlings have a pelagic stage that lasts from the time they leave the nesting beach until they are approximately 22-25 cm in straight carapace length (Meylan 1988; Meylan and Donnelly 1999). The pelagic stage is followed by residency in developmental habitats (foraging areas where juveniles reside and grow) in coastal waters. Hawksbill sea turtles have a circumtropical distribution and usually occur between latitudes 30°N and 30°S in the Atlantic, Pacific, and Indian Oceans. In the western Atlantic, hawksbills are widely distributed and can be found off the coasts of Florida and Texas in the continental U.S. Little is known about the diet of pelagic stage hawksbills. Adult foraging typically occurs over coral reefs, although other hardbottom communities and mangrove-fringed areas are occupied occasionally. Hawksbills show fidelity to their foraging areas over several years (van Dam and Diéz 1998). The hawksbill's diet is highly specialized and consists primarily of sponges (Meylan 1988). Gravid females have been noted ingesting coralline substrate (Meylan 1984) and calcareous algae (Anderes Alvarez and Uchida 1994), which are believed to be possible sources of calcium to aid in eggshell production. The maximum diving depths of these animals are not known, but the maximum length of dives is estimated at 73.5 minutes. More routinely, dives last about 56 minutes (Hughes 1974).

Kemp's ridley are the smallest of all sea turtles. Adults generally weigh less than 100 lbs (45 kg) and have a carapace length of around 2.1 ft (65 cm). The primary range of Kemp's ridley sea turtles is within the Gulf basin, though they also occur in coastal and offshore waters of the U.S. Atlantic Ocean. Hatchlings are pelagic during the early stages of life and feed in surface waters (Carr 1987; Ogren 1989). After the juveniles reach approximately 20 cm carapace length they move to relatively shallow (less than 50 m) benthic foraging habitat over unconsolidated substrates (Márquez-M. 1994). They have also been observed transiting long distances between foraging habitats (Ogren 1989). Kemp's ridley sea turtles feeding in these nearshore areas primarily prey on crabs, though they are also known to ingest mollusks, fish, jellyfish, marine

vegetation, and shrimp (Shaver 1991). The fish and shrimp Kemp's ridley sea turtles ingest are not thought to be a primary prey item but instead may be scavenged opportunistically from bycatch discards or discarded bait (Shaver 1991). Given their preference for shallower water, Kemp's ridley sea turtles most routinely make dives of 50 m or less (Soma 1985; Byles 1988). Their maximum diving range is unknown. Depending on the life stage a Kemp's ridley sea turtles may be able to stay submerged anywhere from 167 minutes to 300 minutes, though dives of 12.7 minutes to 16.7 minutes are much more common (Soma 1985; Mendonca and Pritchard 1986; Byles 1988). Kemp's ridley sea turtles may also spend as much as 96% of their time underwater (Soma 1985; Byles 1988).

Leatherbacks are the largest, most pelagic, and most vulnerable to entanglement in fishing gear of all ESA-listed sea turtles. They spend most of their time in the open ocean although they will enter coastal waters and are seen over the continental shelf on a seasonal basis to feed in areas where jellyfish are concentrated (Heppell et al. 2003). Curved carapace length often exceeds 5 ft (150 cm) and front flippers that can span almost 9 ft (270 cm) (NMFS and USFWS 1998). Mature males and females can reach lengths of over 6 ft (2 m) and weigh close to 2,000 lbs (900 kg). Leatherbacks feed primarily on cnidarians (medusae, siphonophores) and tunicates. Unlike other sea turtles, leatherbacks' diets do not shift during their life cycles. Because leatherbacks' ability to capture and eat jellyfish is not constrained by size or age, they continue to feed on these species regardless of life stage (Bjorndal 1997). Leatherbacks are the deepest diving of all sea turtles. It is estimated that these species can dive in excess of a half-mile (Eckert et al. 1989) but more frequently dive to depths of 50 m to 84 m (Eckert et al. 1986). Dive times range from a maximum of 37 minutes to more routines dives of 4 to 14.5 minutes (Standora et al. 1984; Eckert et al. 1986; Eckert et al. 1989; Keinath and Musick 1993). Leatherbacks may spend 74% to 91% of their time submerged (Standora et al. 1984).

Loggerhead sea turtles inhabit continental shelf and estuarine environments throughout the U.S. Atlantic, Gulf, and Caribbean Sea. (Dodd Jr. 1988). Hatchlings forage in the open ocean and are often associated with Sargassum rafts (Hughes 1974; Carr 1987; Walker 1994; Bolten and Balazs 1995). The pelagic stage of these sea turtles are known to eat a wide range of things including salps, jellyfish, amphipods, crabs, syngnathid fish, squid, and pelagic snails (Brongersma 1972). Stranding records indicate that when pelagic immature loggerheads reach 40-60 cm straight carapace length (SCL), they begin to live in coastal inshore and nearshore waters of the continental shelf throughout the U.S. Atlantic (Witzell 2002). Here they forage over hard and soft-bottom habitats for crabs, mollusks, jellyfish, and vegetation (Carr 1986; Dodd Jr. 1988). Adults in the southeast U.S. average about 3 ft (92 cm) long SCL and weigh approximately 255 lbs (116 kg) (Ehrhart and Yoder 1978). Adult loggerheads eat a variety of invertebrates with crabs and mollusks being an important prey source (Burke et al. 1993). Estimates of the maximum diving depths of loggerheads range from 211 m to 233 m (692-764 ft.) (Thayer et al. 1984; Limpus and Nichols 1988). The lengths of loggerhead dives are frequently between 17 and 30 minutes (Thayer et al. 1984, Limpus and Nichols 1988; Limpus and Nichols 1994; Lanyon et al. 1989) and they may spend anywhere from 80 to 94% of their time submerged (Limpus and Nichols 1994; Lanyon et al. 1989).

All of the above sea turtles are adversely affected by the Gulf reef fish fishery. Incidental captures are infrequent, but occur in all commercial and recreational hook-and-line and longline components of the reef fish fishery. Observer data indicate that the bottom longline component of the fishery interacts solely with loggerhead sea turtles. Captured loggerhead sea turtles can be released alive or can be found dead upon retrieval of bottom longline gear as a result of forced submergence. Sea turtles caught during other reef fish fishing with other gear types are believed to all be released alive due to shorter gear soak times. All sea turtles released alive may later succumb to injuries sustained at the time of capture or from exacerbated trauma from fishing hooks or lines that were ingested, entangled, or otherwise still attached when they were released. Sea turtle release gear and handling protocols are required in the commercial sector and charter/headboat component of the reef fish fisheries to minimize post-release mortality.

Protected Fish

The **Nassau grouper's** confirmed distribution currently includes Bermuda and Florida (USA), throughout the Bahamas and Caribbean Sea (Heemstra and Randall 1993). The Nassau grouper has been documented in the Gulf at Arrecife Alacranes (north of Progreso) to the northwest off the Yucatan Peninsula, Mexico (Hildebrand et al. 1964). Nassau grouper is generally replaced ecologically in the eastern Gulf by red grouper (*E. morio*) in areas north of Key West or the Tortugas (Smith 1971). They are considered a rare or transient species off Texas in the northwestern Gulf (Gunter and Knapp 1951 in Hoese and Moore 1998).

The Nassau grouper is primarily a shallow-water, insular fish species that has long been valued as a major fish resource throughout the wider Caribbean, South Florida, Bermuda, and the Bahamas (Carter et al. 1994). As larvae, Nassau grouper are planktonic. After an average of 35-40 days and at an average size of 32 millimeters TL, larvae recruit from an oceanic environment into demersal habitats (Colin 1992; Eggleston 1995). Juvenile Nassau grouper (12-15 centimeters TL) are relatively solitary and remain in specific areas associated with macroalgae, and both natural and artificial reef structure) for months (Bardach 1958). As juveniles grow, they move progressively to deeper areas and offshore reefs (Tucker et al. 1993; Colin et al. 1997). Smaller juveniles occur in shallower inshore waters (3.7-16.5m) and larger juveniles are more common near deeper (18.3-54.9 m) offshore banks (Bardach et al. 1958; Cervigón 1966; Silva Lee 1974; Radakov et al. 1975; Thompson and Munro 1978). Adult Nassau grouper also tend to be relatively sedentary and are commonly associated with high-relief coral reefs or rocky substrate in clear waters to depths of 130 m. Generally, adults are most common at depths less than 100 m (Hill and Sadovy de Mitcheson 2013) except when at spawning aggregations where they are known to descend to depths of 255 m (Starr et al. 2007). Nassau grouper form spawning aggregations at predictable locations around the winter full moons, or between full and new moons (Smith 1971; Colin 1992; Tucker et al. 1993; Aguilar-Perera 1994; Carter et al. 1994; Tucker and Woodward 1994).

The most serious threats to the status of Nassau grouper today are fishing of spawning aggregations and inadequate law enforcement protecting spawning aggregations in many foreign nations. These threats are currently affecting the status of Nassau grouper, putting it at a heightened risk of extinction.

Historically the **smalltooth sawfish** in the U.S. ranged from New York to the Mexico border. Their current range is poorly understood but believed to have contracted from these historical areas. Smalltooth sawfish primarily occur in the Gulf off peninsular Florida and are most common off Southwest Florida and the Florida Keys. Historical accounts and recent encounter data suggest that immature individuals are most common in shallow coastal waters less than 25 m (Bigelow and Schroeder 1953; Adams and Wilson 1995), while mature animals occur in waters in excess of 100 m. Smalltooth sawfish feed primarily on fish. Mullet, jacks, and ladyfish are believed to be their primary food resources (Simpfendorfer 2001). Smalltooth sawfish also prey on crustaceans (mostly shrimp and crabs) by disturbing bottom sediment with their saw (Norman and Fraser 1938; Bigelow and Schroeder 1953).

Smalltooth sawfish are also adversely affected by the Gulf reef fish fishery, but are interacted with at a much lesser extent than sea turtles. Although the long, toothed rostrum of the smalltooth sawfish causes this species to be particularly vulnerable to entanglement in fishing gear, incidental captures in the commercial and recreational hook-and-line components of the reef fish fishery are rare events. Only eight smalltooth sawfish are anticipated to be incidentally caught every 3 years in the entire reef fish fishery, and none of these captures are expected to result in mortality (NMFS 2011). Fishermen in this fishery are required to follow smalltooth sawfish safe handling and release guidelines.

Northern Gulf of Mexico Hypoxic Zone

Every summer in the northern Gulf, a large hypoxic zone forms. It is the result of allochthonous materials and runoff from agricultural lands by rivers to the Gulf, increasing nutrient inputs from the Mississippi River, and a seasonal layering of waters in the Gulf¹⁹. The layering of the water is temperature and salinity dependent and prevents the mixing of higher oxygen content surface water with oxygen-poor bottom water. For 2014, the extent of the hypoxic area was estimated to be 5,052 square miles and is similar to the running average for over the past five years of 5,543 square miles Gulf²⁰.

The hypoxic conditions in the northern Gulf directly impact less mobile benthic macroinvertebrates (e.g., polychaetes) by influencing density, species richness, and community composition (Baustian and Rabalais 2009). However, more mobile macroinvertebrates and demersal fishes (e.g., red snapper) are able to detect lower dissolved oxygen levels and move away from hypoxic conditions. Therefore, although not directly affected, these organisms are indirectly affected by limited prey availability and constrained available habitat (Baustian and Rabalais 2009; Craig 2012). For red snapper, Courtney et al. (2013) have hypothesized that the hypoxic zone could have an indirect positive effect on red snapper populations in the western Gulf. They posit that increased nutrient loading may be working in 'synergy' with abundant red snapper artificial habitats (oil platforms). Nutrient loading likely increases forage species biomass and productivity providing ample prey for red snapper residing on the oil rigs, thus

¹⁹ http://www.gulfhypoxia.net/

²⁰ http://www.gulfhypoxia.net/

increasing red snapper productivity. Grouper and tilefish are less common in the northern Gulf, so the northern Gulf hypoxic zone influences these stocks less.

Climate Change

Climate change projections show increases in sea surface temperature and sea level, decreases in sea-ice cover, and changes in salinity, wave climate, and ocean circulation (Intergovernmental Panel on Climate Change (IPCC)²¹). These changes are likely to affect plankton biomass and fish larvae abundance that could adversely impact fish, marine mammals, seabirds, and ocean biodiversity. Kennedy et al. (2002) and Osgood (2008) have suggested global climate change could bring about temperature changes in coastal and marine ecosystems that, in turn, can influence organism metabolism; alter ecological processes, such as productivity and species interactions; change precipitation patterns and cause a rise in sea level that could change the water balance of coastal ecosystems; alter patterns of wind and water circulation in the ocean environment; and influence the productivity of critical coastal ecosystems such as wetlands, estuaries, and coral reefs. National Oceanic and Atmospheric Administration's (NOAA) Climate Change Web Portal²² indicates that the average sea surface temperature in the Gulf will increase by 1.2-1.4°C for 2006-2055 compared to the average over the years 1956-2005. For reef fishes, Burton (2008) speculated that climate change could cause shifts in spawning seasons, changes in migration patterns, and changes to basic life history parameters such as growth rates. The OceanAdapt model²³ shows distributional trends both in latitude and depth over the time period 1985-1013. For some species such as the smooth puffer, there has been a distributional trend to the north in the Gulf. For other species such as red snapper and the dwarf sand perch, there has been a distributional trend towards deeper waters. Finally, for other species such as the dwarf goatfish, there has been a distributional trend both to the north and to deeper waters. These changes in distributions have been hypothesized as a response to environmental factors such as increases in temperature.

The distribution of native and exotic species may change with increased water temperature, as may the prevalence of disease in keystone animals such as corals and the occurrence and intensity of toxic algae blooms. Hollowed et al. (2013) provided a review of projected effects of climate change on the marine fisheries and dependent communities. Integrating the potential effects of climate change into the fisheries assessment is currently difficult due to the time scale differences (Hollowed et al. 2013). The fisheries stock assessments rarely project through a time span that would include detectable climate change effects.

Greenhouse gases

The IPCC⁸ has indicated greenhouse gas emissions are among the most important drivers of recent changes in climate. Wilson et al. (2017) inventoried the sources of greenhouse gases in

²¹ http://www.ipcc.ch/

²² http://www.esrl.noaa.gov/psd/ipcc/ocn/

²³ http://oceanadapt.rutgers.edu/regional data/

the Gulf from sources associated with oil platforms and those associated with other activities such as fishing. A summary of the results of the inventory are shown in Table 3.3.6 with respect to total emissions and from fishing. Commercial fishing and recreational vessels make up a small percentage of the total estimated greenhouse gas emissions from the Gulf (2.04% and 1.67%, respectively).

Table 3.3.6. Total Gulf greenhouse gas 2014 emissions estimates (tons per year [tpy]) from oil platform and non-oil platform sources, commercial fishing, and percent greenhouse gas emissions from commercial fishing vessels of the total emissions*.

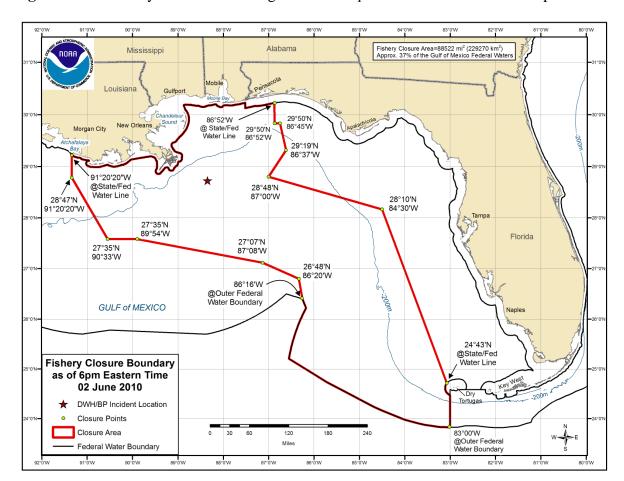
Emission source	CO ₂	Greenhouse CH4	Gas N ₂ O	Total CO _{2e} **
Oil platform	5,940,330	225,667	98	11,611,272
Non-platform	14,017,962	1,999	2,646	14,856,307
Total	19,958,292	227,665	2,743	26,467,578
Commercial fishing	531,190	3	25	538,842
Recreational fishing	435,327	3	21	441,559
Percent commercial fishing	2.66%	>0.01%	0.91%	2.04%
Percent recreational fishing	2.18%	>0.01%	0.77%	1.67%

^{*}Compiled from Tables 6-11, 6-12, and 6-13 in Wilson et al. (2017). **The CO_2 equivalent (CO_2 e) emission estimates represent the number of tons of CO_2 emissions with the same global warming potential as one ton of another greenhouse gas (e.g., CH_4 and N_2O). Conversion factors to CO_{2e} are 21 for CH_4 and 310 for N_2O .

Deepwater Horizon MC252 Oil Spill

General Impacts on Fishery Resources

The presence of polyaromatic hydrocarbons (PAHs) in marine environments can have detrimental impacts on marine finfish, especially during the more vulnerable larval stage of development (Whitehead et al. 2011). When exposed to toxic levels of PAHs (1–15 µg/L), greater amberjack (*Seriola dumerili*) larvae develop cardiac abnormalities and physiological defects (Incardona et al. 2014). The future reproductive success of long-lived species, including red drum (*Sciaenops ocellatus*) and many reef fish species, may be negatively affected by episodic events resulting in high-mortality years or low recruitment. These episodic events could leave gaps in the age structure of the population, thereby affecting future reproductive output (Mendelssohn et al. 2012). Other studies have described the vulnerabilities of various marine finfish species, with morphological and/or life history characteristics similar to species found in


the Gulf, to oil spills and dispersants (Hose et al. 1996; Carls et al. 1999; Heintz et al. 1999; Short 2003).

An increase in histopathological lesions were found in red snapper (*Lutjanus campechanus*) in the area affected by the oil, but Murawski et al. (2014) found that the incidence of lesions had declined between 2011 and 2012. The occurrence of such lesions in marine fish is not uncommon (Sindermann 1979; Haensly et al. 1982; Solangi and Overstreet 1982; Khan and Kiceniuk 1984, 1988; Kiceniuk and Khan 1987; Khan 1990). Red snapper diet was also affected after the spill. A decrease in zooplankton consumed, especially by adults (greater than 400 mm TL) over natural and artificial substrates may have contributed to an increase in the consumption of fish and invertebrate prey- more so at artificial reefs than natural reefs (Tarnecki and Patterson 2015).

The effect of oil, dispersants, and the combination of oil and dispersants on fishes of the Gulf remains an area of concern. Marine fish species typically concentrate PAHs in the digestive tract, making stomach bile an appropriate testing medium. A study by Synder et al. (2015) assessed bile samples from golden tilefish (Lopholatilus chamaeleonticeps), king snake eel (Ophichthus rex), and red snapper for PAH accumulation over time and reported concentrations were highest in golden tilefish during the same time period when compared to king snake eel and red snapper. These results suggest that the more highly associated an organism is with the sediment in an oil spill area, the higher the likelihood of toxic PAH accumulation. Twenty-first century dispersant applications are thought to be less harmful than their predecessors. However, the combination of oil and dispersants has proven to be more toxic to marine fishes than either dispersants or crude oil alone. Marine fish which are more active (e.g., a pelagic species versus a demersal species) appear to be more susceptible to negative effects from interactions with weathered oil/dispersant emulsions. These effects can include mobility impairment and inhibited respiration (Swedmark et al. 1973). Another study found that while Corexit 9500A® and oil are similar in their toxicity, when Corexit 9500A® and oil were mixed in lab tests, toxicity to microscopic rotifers increased up to 52-fold (Rico-Martínez et al. 2013). These studies suggest that the toxicity of the oil and dispersant combined may be greater than anticipated.

As reported by NOAA's Office of Response and Restoration (NOAA 2010), the oil from the *Deepwater Horizon MC252* spill is relatively high in alkanes, which can readily be used by microorganisms as a food source (Figure 3.3.2). As a result, the oil from this spill is likely to biodegrade more readily than crude oil in general. The *Deepwater Horizon MC252* oil is also relatively much lower in PAHs, which are highly toxic chemicals that tend to persist in the environment for long periods of time, especially if the spilled oil penetrates into the substrate on beaches or shorelines. Like all crude oils, MC252 oil contains volatile organic compounds (VOC) such as benzene, toluene, and xylene. Some VOCs are acutely toxic but because they evaporate readily, they are generally a concern only when oil is fresh.²⁴

²⁴ Source: http://sero.nmfs.noaa.gov/deepwater horizon/documents/pdfs/fact sheets/oil characteristics.pdf

Figure 3.3.2. Fishery closure at the height of the *Deepwater Horizon MC252* oil spill.

Outstanding Effects

As a result of the *Deepwater Horizon MC252* oil spill, a consultation pursuant to ESA Section 7(a)(2) was reinitiated. As discussed above, on September 30, 2011, the Protected Resources Division released an Opinion, which after analyzing best available data, the current status of the species, environmental baseline (including the impacts of the recent *Deepwater Horizon MC252* oil spill in the northern Gulf), effects of the proposed action, and cumulative effects, concluded that the continued operation of the Gulf reef fish fishery is not likely to jeopardize the continued existence of green, hawksbill, Kemp's ridley, leatherback, or loggerhead sea turtles, nor the continued existence of smalltooth sawfish (NMFS 2011).²⁵

²⁵ For additional information on the *Deepwater Horizon MC252* oil spill and associated closures, see: http://sero.nmfs.noaa.gov/deepwater-horizon-oil-spill.htm.

3.4 Description of the Economic Environment

A description of the reef fish stocks affected by the actions considered in this amendment is provided in Section 1.1. Additional details on the economic environment of the recreational and commercial sectors of the Gulf reef fish fishery, or components thereof, are provided in Reef Fish Amendment 36A (GMFMC 2017), Red Grouper Allowable Harvest Framework Action (GMFMC 2016b), Modifications to Gag Minimum Size Limits, Recreational Season and Black Grouper Minimum Size Limits Framework Action (GMFMC 2016c), Reef Fish Amendment 28 (GMFMC 2015a), Modifications to Greater Amberjack Allowable Harvest and Management Measures Framework Action (GMFMC 2015b), and the Framework Action to Set the Annual Catch Limit and Bag Limit for Vermilion Snapper, Set Annual Catch Limit for Yellowtail Snapper, and Modify the Venting Tool Requirement (GMFMC 2013a).

3.4.1 Commercial Sector

This proposed action would only apply to a portion of the recreational sector (headboat survey vessels). As a result, a description of the economic environment for the commercial sector is not provided.

3.4.2 Recreational Sector

This proposed action would only apply to headboat survey vessels. As a result, a description of the economic environment specifically for the charter vessel and private angler portions of the recreational sector is not provided.

Recreational effort derived from the MRIP database can be characterized in terms of the number of target trips, catch trips, and directed trips taken by anglers in the private recreational sector and by charter vessels. Similar analysis of recreational effort is not possible for the headboat mode because headboats are not included in MRIP, and headboat logbook data does not collect data at the angler level. Estimates of effort by headboats are typically provided in terms of angler days, or the number of standardized 12-hour fishing days that account for the different half-, three-quarter-, and full-day fishing trips by headboats. The stationary "fishing for demersal (bottom-dwelling) species" nature of headboat fishing, as opposed to trolling, suggests that most, if not all, headboat trips and, hence, angler days, are demersal or reef fish trips by intent.

The distribution of headboat effort (angler days) by geographic area is presented in Table 3.4.2.1. For purposes of data collection, the headboat data collection program divides the Gulf into several areas. On average, from 2012 through 2016, the area from the Dry Tortugas through the Florida Middle Grounds accounted for 41.2% of total headboat angler days in the Gulf, followed by northwest Florida through Alabama (35.1%), Texas (22.3%), and Mississippi through Louisiana (1.4%). Western Florida experienced a steady increase over that time period to a five-year high in 2016.

Table 3.4.2.1. Headboat angler days and percent distribution, by state, 2012-2016.

	Angler Days				P	ercent Di	stributio	n
Year	FLW	NWFL- AL*	MS- LA**	TX	FLW	FL-AL	MS- LA	TX
2012	84,205	77,770	3,680	51,776	38.73%	35.77%	1.69%	23.81%
2013	94,752	80,048	3,406	55,749	40.50%	34.22%	1.46%	23.83%
2014	102,841	88,524	3,257	51,231	41.83%	36.01%	1.32%	20.84%
2015	107,910	86,473	3,587	55,135	42.63%	34.16%	1.42%	21.78%
2016	109,101	90,877	2,955	54,083	42.45%	35.36%	1.15%	21.04%
Average	99,762	84,738	3,377	53,595	41.23%	35.10%	1.41%	22.26%

Source: NMFS Southeast Region Headboat Survey (SRHS).

Permits

The for-hire sector is comprised of charter vessels and headboats (party boats). Although charter vessels tend to be smaller, on average, than headboats, the key distinction between the two types of operations is how the fee is determined. On a charter boat trip, the fee charged is for the entire vessel, regardless of how many passengers are carried, whereas the fee charged for a headboat trip is paid per individual angler.

A federal charter/headboat (for-hire) vessel permit is required for fishing in federal waters for Gulf reef fish. Gulf reef fish for-hire permits are limited access permits. From a historical perspective, the number of permits that were valid in a given year has continually decreased over the past several years. Specifically, from 2008 to 2016, the number of valid permits in each year were 1458, 1417, 1385, 1353, 1336, 1323, 1310, 1294, and 1282, respectively. As of November 14, 2017, there were 1,278 valid or renewable for-hire reef fish permits, 1,175 of which were valid. A renewable permit is an expired limited access permit that cannot be actively fished, but is renewable for up to one year after expiration.

Although the for-hire permit application collects information on the primary method of operation, the permit itself does not identify the permitted vessel as either a headboat or a charter vessel and vessels may operate in both capacities. However, if a vessel meets the selection criteria used by the SRHS and is selected to report by the Science Research Director (SRD) of the SEFSC, it is determined to operate primarily as a headboat and is required to submit harvest and effort information to the SRHS.

Economic Performance

Information on Gulf headboat operating characteristics is included in Savolainen et al. (2012) and is incorporated herein by reference though some key findings are included here. These findings are based on survey data not headboat logbook data. According to this data, headboats

^{*}Beginning in 2013, HBS data was reported separately for NW Florida and Alabama, but has been combined here for consistency with previous years.

^{**}Headboat data from Mississippi and Louisiana are combined for confidentiality purposes.

average 54.7 feet in length and 891 horsepower. The percentage of part-time operators in the headboat sector has historically been low. On average, only 10 percent of Gulf headboats typically operate on a part-time basis. Headboats typically target offshore species and fish in federal waters, largely due to vessel size and consumer demand. An average of 84 percent of headboat trips in the Gulf targeted reef fish species, while only 10 percent targeted inshore species and 6 percent pelagic species. Overall, 81 percent of these annual trips were taken in the EEZ.

According to the headboat logbook data, the number of active federally permitted Gulf headboats in the SRHS was 68 from 2012 through 2015 and 69 in 2011 and 2016 (K. Fitzpatrick, NMFS SEFSC, pers. comm.). Thus, the fleet size remained stable from 2011 through 2016. However, the fleet as a whole and on average has become more active over time. Total trips per year by all Gulf headboats and the average (mean) annual number of trips per vessel increased by almost 20% from 2011 through 2016. Also, the average (mean) annual number of trips per vessel is consistently much higher than the median value. This suggests the distribution of trips across boats in a year is highly skewed, i.e., there are a relatively small number of boats that take many more trips than the average (mean), while many boats take fewer trips than the average (mean).

Table 3.4.2.2. Total Gulf headboat trips and average trips per headboat by trip type and year,

2011-2016. Trips include reported and estimated trips.

Year	Number	Statistic	½ Day	3/4 Day	Full Day	Full Day+	All Trips
	of		Trips	Trips	Trips	Trips	
	Vessels						
2011	69	Total	3,129	4,082	1,024	211	8,446
		Median	10	21	2	0	98
		Mean	45	59	15	3	122
2012	68	Total	3,200	4,032	1,219	234	8,685
		Median	11	25	3	0	116
		Mean	47	59	18	3	128
2013	68	Total	2,902	2,363	3,316	243	8,824
		Median	10	11	25	0	112
		Mean	43	35	49	4	130
2014	68	Total	3,281	2,260	3,343	275	9,159
		Median	14	5	26	0	129
		Mean	48	33	49	4	135
2015	68	Total	3,649	2,265	3,499	313	9,726
		Median	11	7	29	0	125
		Mean	54	33	51	5	143
2016	69	Total	3,757	2,483	3,544	298	10,082
		Median	11	6	27	0	118
		Mean	54	36	51	4	146

During this time, there has also been a significant increase in the number of full day trips, and the percentage of total trips accounted for by full-day trips. Conversely, the number of ¾ day trips and the percentage of total trips they represent has decreased during this time. These particular trends began in 2013.

With respect to economic characteristics of Gulf headboat operations, the most current estimate of average annual gross revenue per headboat is also provided in Savolainen, et al. (2012). In 2016 dollars, the average annual gross revenue for a Gulf headboat is \$256,134.

A headboat's gross revenues are based on the fees charged per angler/trip as well as the number of trips taken. Recent information on average fee per angler charged on Gulf headboat trips was provided for 2012 and 2013 in Carter (2015) and for 2014 and 2015 in Carter (2016). Trip fee per angler varies by trip duration, i.e., customers pay higher fees for longer trips. This information is summarized in Table 3.4.2.3. Estimates have been converted into 2016 dollars. **Table 3.4.2.3.** Average Fee per Angler/Trip by Trip Duration for Gulf Headboats, 2012-2015. (2016 dollars)

Duration	2012	2013	2014	2015
½ day	\$53	\$55	\$56	\$63
3⁄4 day	\$72	\$72	\$76	\$78
Full day	\$82	\$84	\$85	\$88
>Full day	\$95	\$99	\$115	\$115

Gross revenues overstate the economic value generated by trips taken by headboats. Economic value for for-hire vessels can be measured by producer surplus (PS) per passenger trip. In general, producer surplus is the amount of money that a vessel owner earns in excess of the cost of providing the trip. Estimates of the PS per for-hire passenger trip are not available. Instead, net operating revenue (NOR), which is the return used to pay all labor wages, returns to capital, and owner profits, is used as a proxy for PS. The estimated NOR value per angler trip for headboats is approximately \$55 (2016 dollars) (C. Liese, NMFS SEFSC, pers. comm.).

Additional data on headboat trips in the Gulf was collected in 2015 regarding the number of crew, the number of non-fishing passengers, the gallons of fuel used per trip, and the price paid per gallon of fuel (D. Carter, NMFS SEFSC, pers. comm.). According to this data, in 2015, each headboat used about 109 gallons of fuel and carried approximately 34 anglers, 35 passengers, and 2.4 crew members on average per trip, while the average price per gallon of fuel was \$2.69 (2016 dollars).

However, just as fees vary by trip duration, these trip characteristics also vary considerably by trip duration. These differences are illustrated in Table 3.4.2.4. Longer trips use more fuel per hour on average, with fuel use per trip on ¾ and full day trips being nearly double the usage on half-day trips and trips longer than a full day using nearly double the amount used on ¾ and full day trips. In general, the other trip characteristics also increase with duration. However, the differences across trips of different durations are not as large.

²⁶ The number of passengers accounts for paying customers who do not fish on the trip.

Table 3.4.2.4. Headboat Trip Characteristics by Trip Duration, 2015. (2016 dollars)

Duration	Fuel (gallons)	Fuel price (\$/gallon)	Number of Anglers	Number of Passengers	Number of Crew
½ day	58.74	\$2.69	34.01	34.66	2.32
3⁄4 day	115.94	\$2.88	35.36	36.43	2.49
Full day	115.00	\$2.65	31.54	31.70	2.21
>Full day	265.26	\$2.38	40.42	40.80	3.00

Additional information regarding the expected operations and performance of headboats under the type of program(s) being considered in this amendment can be discerned from research conducted in association with the experimental Headboat Collaborative program that was in place during 2014 and 2015 for red snapper and gag harvests (Abbott 2016). The collaborative was a type of catch share program. The most important findings of the research in this regard are as follows.

First, most headboats chose to spread their allocations across a much larger number of trips over the course of the season. In turn, this operational change provided their customers with the opportunity to catch red snapper and gag outside their typical seasons. As such, access to gag and red snapper was spread across a larger and more heterogeneous pool of anglers than would have case during the traditional seasons.

Second, landings of red snapper and gag per angler decreased due to the combination of a fixed annual allocation and a longer season. While some headboat operators chose to limit the number of trips utilizing quota for red snapper or gag while allowing anglers to retain their legal bag limit, about half of the headboat operators increased the number of trips offering access to red snapper or gag by reducing the number of fish each angler could retain on these trips, e.g. one fish per person rather than two fish per person. In turn, this increased the number of anglers and trips with access to these particular species. Although headboat operators have always had the ability to limit what anglers can retain below the legal bag limit, the economic incentive to do so did not exist prior to and outside of this program.

Third, although Abbott concludes some increases in customer demand, revenues, and profits would have likely occurred without the program, due to other factors, at least some of the increase in anglers per trip in 2014 and increases in trips in 2015 were caused by more attractive fishing opportunities for anglers which in turn were the direct result of the program. Further, the shift of customers to longer trips which commanded higher prices and earned greater profit margins was created by the opportunity to offer trips to harvest red snapper or gag outside the typical season.²⁷ Higher profit margins were also attained as a result of reduced fuel costs. Fuel costs for the program vessels were less because they could fish for red snapper rather than spend time looking for other legally retainable species.

²⁷ Some operators charged a premium price for trips that targeted red snapper or gag. However, it is unlikely this would continue if a program was implemented for the entire headboat sector due to the high level of competition.

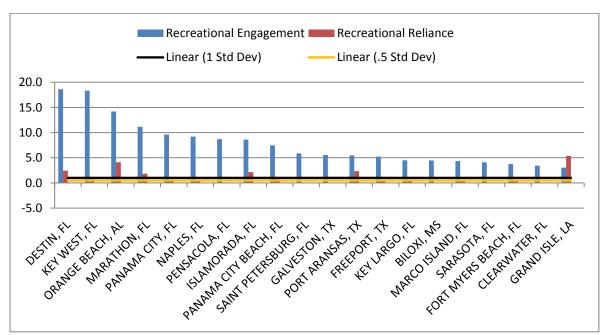
Finally, a catch share program would be expected to allow each headboat operation to adapt its trip offerings, pricing, and marketing approach to match the preference of its customer base. Because customer preferences and each business' customer base will vary for many reasons, the end result is likely to be a more differentiated headboat market that will better meet the different preferences of its customers. As such, not only are headboat operators likely to realize greater revenues and profits, the welfare of anglers is likely to increase (as measured by consumer surplus) as a result of the greater diversity in when trips can be offered and the types of trips that can be offered. In short, consumers benefit when there is a broader menu from which to choose.

Economic Impacts

The desire for recreational fishing generates economic activity as consumers spend their income on various goods and services needed for recreational fishing. This spurs economic activity in the region where recreational fishing occurs. In the absence of the opportunity to fish, the income would likely be spent on other goods and services and these expenditures would similarly generate economic activity in the region where the expenditure occurs.

Recreational fishing generates economic impacts (business activity). Business activity is typically characterized in the form of jobs (full- and part-time), income impacts (wages, salaries, and self-employed income), value-added impacts (the difference between the value of goods and the cost of materials or supplies), and output impacts (gross business sales). Target species data is not collected on the headboat logbooks. Therefore, estimates of the average target effort for headboats are not currently available, and the economic impacts associated with headboat trips targeting the species being considered in this amendment cannot be determined at this time.

3.5 Social Environment


This amendment would affect the recreational management of several reef fish species in the Gulf and specifically, the harvest of those species by vessels that participate in the SRHS and the anglers who fish from these vessels. To provide information on the geographic distribution of fishing involvement, the top recreational fishing communities based on recreational engagement are identified, followed by the number of federal reef fish for-hire permits broken down by state, the top ranking communities by number of for-hire permits, and location of landings history vessels (LHV) around the Gulf. The LHV landings by state for each of the five species and the percent of LHV landings for each species out of all recreational landings are provided.

Community level data are presented to meet the requirements of National Standard 8 of the Magnuson-Stevens Act, which requires the consideration of the importance of fishery resources to human communities when changes to fishing regulations are considered. Lastly, social vulnerability data are presented to assess the potential for environmental justice concerns. This amendment does not affect commercial fishing, thus the commercial sector is not discussed further.

3.5.1 Recreational Fishing Communities

Reef fish landings by species for the recreational sector as a whole are not available at the community level, making it difficult to identify communities as dependent on recreational fishing for any of the subject species of this amendment. Because limited data are available concerning how recreational fishing communities are engaged and reliant on specific species, indices were created using secondary data from permit and infrastructure information for the southeast recreational fishing sector at the community level (Jepson and Colburn 2013; Jacob et al. 2013). Recreational fishing engagement is represented by the number of recreational permits and vessels designated as "recreational" by homeport and owners' address. Fishing reliance includes the same variables as fishing engagement, divided by population. Factor scores of both engagement and reliance were plotted.

Figure 3.5.1.1 identifies the top Gulf communities that are engaged and reliant upon recreational fishing in general. Two thresholds of one and one-half standard deviation above the mean were plotted to help determine a threshold for significance. Communities are presented in ranked order by fishing engagement and all 20 included communities demonstrate high levels of recreational fishing engagement, although this is not specific to any species. Because the analysis used discrete geo-political boundaries, Panama City and Panama City Beach, Florida had separate values for the associated variables. Calculated independently, each still ranked high enough to appear in the top 20 list suggesting a greater importance for recreational fishing in that area.

Figure 3.5.1.1. Top 20 recreational fishing communities' engagement and reliance. Source: SERO, Community Social Vulnerability Indicators Database 2014 (American Community Survey 2010-2014).

Federal Reef Fish For-hire Vessels by Community

Both charter vessels and headboats that are engaged in recreational reef fish fishing in federal waters must have a valid federal reef fish for-hire permit. These permits are limited access and may be transferred, except for historical captain permits which are not transferable and must be fished by the permit holder. Although the number is unknown, it is assumed that many reef fish for-hire permits are latent and are not currently being used for reef fish fishing.

The majority of federal reef fish for-hire permits are held by operators in Florida (59% in 2016), followed by Texas (17.6%), Alabama (10.2%), Louisiana (9%), Mississippi (2.7%), and other states (1.4%; Table 3.5.1.1). The distribution of permits by state has followed a similar pattern throughout the last 5 years. These data may vary from the numbers included elsewhere in this document because of the date on which data were gathered. Data included in Table 3.5.1.1 are based on the number of permits throughout the year, rather than from a specific date, and include permits that were valid or renewable sometime during the year. In the event a permit was sold during the year, the most recent permit location is identified.

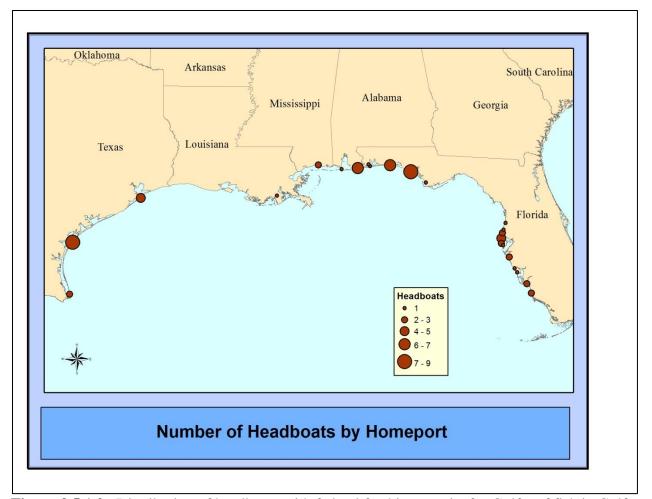
Table 3.5.1.1. Number of federal reef fish for-hire permits, including historical captain permits, by state and by year.

State	2012	2013	2014	2015	2016
AL	157	159	153	143	134
FL	812	803	787	778	776
LA	123	120	117	121	119
MS	48	47	42	38	35
TX	221	219	230	232	232
Other	17	15	16	16	19
Total	1,378	1,363	1,345	1,328	1,315

Source: NMFS SERO permit office, SERO Access database. Includes valid and renewable permits.

Federal for-hire permits are associated with mailing addresses in a total of 348 communities located in 21 states. Based on mailing address, the communities with the most reef fish for-hire permits are provided in Table 3.5.1.2.

Table 3.5.1.2. Communities with the greatest number of federal reef fish for-hire permits, including historical captain permits, in descending order.


State	Community	For Hire Permits
FL	Destin	108
AL	Orange Beach	98
FL	Key West	53
FL	Panama City	52
TX	Galveston	49
LA	Venice	47
FL	Naples	44
TX	Freeport	41
FL	Panama City Beach	34
TX	Port Aransas	30
TX	Corpus Christi	26
FL	Clearwater	25
FL	Pensacola	25
FL	Saint Petersburg	23
MS	Biloxi	23
FL	Sarasota	20
FL	Marco Island	19
FL	Madeira Beach	18
FL	Tarpon Springs	18
FL	Fort Myers Beach	17

Source: NMFS SERO permit office, September 20, 2016.

Landings History Vessels (LHVs)

When vessels with a Gulf reef fish for-hire permit are separated into charter vessels or headboats, the majority are charter vessels (95% of for-hire vessels as of September 20, 2016) and a smaller proportion are headboats (approximately 5%, NMFS SERO permit office). This amendment affects headboats that participate in the SRHS, also called LHVs. Vessels with a federal reef fish for-hire permit that do not participate in the SRHS (i.e., charter vessels) are addressed in Amendment 41. Because the actions of this amendment affect LHVs, further information specific to charter vessels is not included here.

Figure 3.5.1.2 shows the spatial distribution of LHVs around the Gulf. The pattern of abundance for LHVs is evident with large clusters in Florida, including communities in Bay and Okaloosa Counties, as well as several central peninsula communities in and around Pinellas County. Larger clusters of LHVs are also located in Baldwin County, Alabama and Nueces County, Texas (Figure 3.5.1.2).

Figure 3.5.1.2. Distribution of headboats with federal for-hire permits for Gulf reef fish in Gulf states, by community.

Source: NMFS SERO permit office, September 20, 2016.

Depending on the species selected for inclusion in the LHV management program (Action 2), this amendment may affect the harvest of the following reef fish species: red snapper, greater amberjack, gray triggerfish, gag, and red grouper. These five species are harvested by LHVs in all five Gulf states, although the distribution of landings for these species varies by state and year. Tables 2.2.1 - 2.2.5 provide the LHV landings for each of the five species by state or region for the years 2011 - 2015 and the percent of LHV landings for each species out of all recreational landings.

Gulf-wide for the years 2011 – 2015, LHVs averaged 11% of all recreational <u>red snapper</u> landings, with a range of 5% – 15%. For red snapper landings by LHVs from 2011 – 2015, Texas averaged 52% of the landings, followed by LHVs in northwest Florida landing 27%, 13% by Alabama LHVs, and the remaining 4% landed by LHVs in Mississippi, Louisiana, and southwest Florida (Table 2.2.1). In 2016, 57 of the 69 LHVs landed red snapper, including 28 LHVs homeported in Florida and 15 in Texas (SEFSC SRHS).

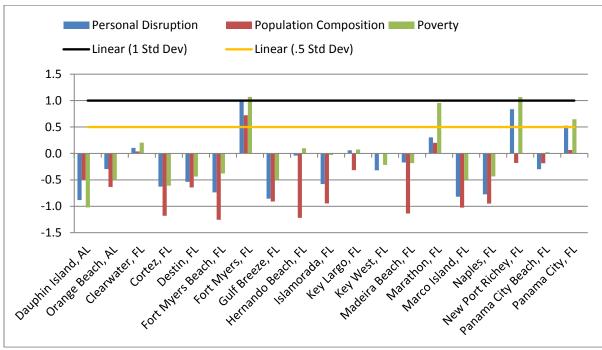
Gulf-wide for the years 2011 – 2015, LHVs averaged 7% of all recreational gray triggerfish landings, with a range of 4% – 11%. For gray triggerfish landings by LHVs from 2011 – 2015, northwest Florida averaged 73% of the landings, followed by LHVs in Alabama, Mississippi, and Louisiana, combined, which averaged 18%. The remaining 8% was landed by LHVs in Texas and southwest Florida (Table 2.2.2). In 2016, 52 LHVs landed gray triggerfish, including 32 LHVs in Florida (SEFSC SRHS).

Gulf-wide for the years 2011 – 2015, LHVs averaged only 6% of all recreational greater amberjack landings, with a range of 5% – 7%. For greater amberjack landings by LHVs from 2011 – 2015, Florida averaged 51% of the landings with the remaining landings distributed among the other four states (Table 2.2.3). In 2016, 35 LHVs landed greater amberjack, including 17 LHVs in Florida and 11 LHVs in Texas (SEFSC SRHS).

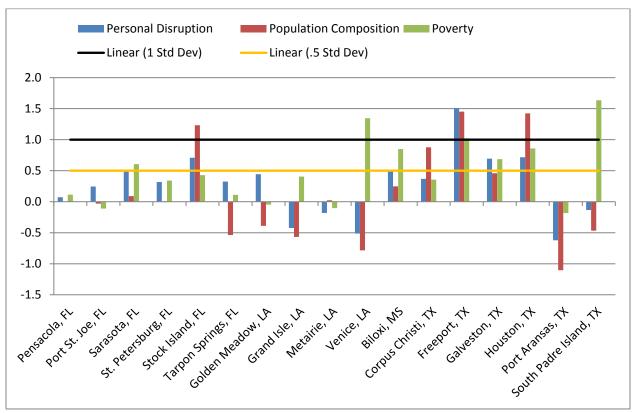
Gulf-wide for the years 2011 – 2015, LHVs averaged only 4% of all recreational landings of gag, with a range of 2% – 7%. For landings of gag by LHVs from 2011 – 2015, Florida averaged 98% of the landings (89% in southwest Florida and 9% in northwest Florida), with the remaining four states landing less than 2% (Table 2.2.4). In 2016, 44 LHVs landed gag, including 31 LHVs in Florida (SEFSC SRHS).

Gulf-wide for the years 2011 – 2015, LHVs averaged only 4% of all <u>red grouper</u> recreational landings, with a range of 3% – 6%. For landings of red grouper by LHVs from 2011 – 2015, Florida averaged 99% of the landings (86% in southwest Florida and 13% in northwest Florida), with the remaining red grouper landings occurring in the rest of the Gulf (Table 2.2.5). In 2016, 40 LHVs landed red grouper, with nearly all (37 LHVs) located in Florida.

3.5.2 Environmental Justice Considerations


Executive Order 12898 requires federal agencies conduct their programs, policies, and activities in a manner to ensure individuals or populations are not excluded from participation in, or denied the benefits of, or subjected to discrimination because of their race, color, or national origin. In addition, and specifically with respect to subsistence consumption of fish and wildlife, federal agencies are required to collect, maintain, and analyze information on the consumption patterns of populations who principally rely on fish and/or wildlife for subsistence. The main focus of Executive Order 12898 is to consider "the disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations in the United States and its territories..." This executive order is generally referred to as environmental justice (EJ).

Recreational fishermen, headboat operators and crew, and associated businesses could be affected by the proposed actions. However, information on the race and income status for groups at the different participation levels is not available. Although information is available concerning communities' overall status with regard to minorities and poverty (e.g., census data), such information is not available specific to fishermen and those involved in the businesses and activities, themselves. To help assess whether any EJ concerns arise from the actions in this


94

amendment, a suite of indices were created to examine the social vulnerability of coastal communities. The three indices are poverty, population composition, and personal disruptions. The variables included in each of these indices have been identified through the literature as being important components that contribute to a community's vulnerability. Indicators such as increased poverty rates for different groups, more single female-headed households and households with children under the age of five, disruptions such as higher separation rates, higher crime rates, and unemployment all are signs of populations experiencing vulnerabilities. Again, for those communities that exceed the threshold it would be expected that they would exhibit vulnerabilities to sudden changes or social disruption that might accrue from regulatory change.

Figure 3.5.2.1 and 3.5.2.2 provide the social vulnerability of the top recreational communities (Figure 3.5.1.1), top ranking communities based on the number of federal for-hire permits for Gulf reef fish (Table 3.5.1.2), and all Gulf communities with LHVs that also made landings of red snapper. This analysis will be expanded to reflect landings of the other four species addressed in this amendment when the data become available. One community exceeds the threshold of one standard deviation above the mean for all three indices, Freeport, Texas. Several communities exceed the threshold of one-half standard deviation above the mean for more than one index (Fort Myers Beach, Florida; New Port Richey, Florida; Panama City, Florida; Sarasota, Florida; Stock Island, Florida; Freeport, Texas; Galveston, Texas; and Houston, Texas). These communities would be the most likely to exhibit vulnerabilities to social or economic disruption due to regulatory change.

Figure 3.5.2.1. Social vulnerability indices for recreational fishing communities. Source: SERO, Community Social Vulnerability Indicators Database 2014 (American Community Survey 2010-2014).

Figure 3.5.2.2. Social vulnerability indices for recreational fishing communities continued. Source: SERO, Community Social Vulnerability Indicators Database 2014 (American Community Survey 2010-2014).

People in these communities may be affected by fishing regulations in two ways: participation and employment. Although these communities may have the greatest potential for EJ concerns, no data are available on the race and income status for those involved in the local fishing industry (employment), or for their dependence on reef fish, specifically (participation). However, the implementation of the proposed actions of this amendment would not discriminate against any group based on their race, ethnicity, or income status because the proposed actions would be applied to all participants in the fishery. Further, there is no known subsistence fishing for the reef fish species addressed in this amendment. Thus, the actions of this amendment are not expected to result in adverse or disproportionate environmental or public health impacts to EJ populations. Although no EJ issues have been identified, the absence of potential EJ concerns cannot be assumed.

3.6 Description of the Administrative Environment

3.6.1 Federal Fishery Management

Federal fishery management is conducted under the authority of the Magnuson-Stevens Act (16 U.S.C. 1801 *et seq.*), originally enacted in 1976 as the Fishery Conservation and Management Act. The Magnuson-Stevens Act claims sovereign rights and exclusive fishery management authority over most fishery resources within the exclusive economic zone, an area extending 200 nautical miles from the seaward boundary of each of the coastal states, and authority over U.S. anadromous species and continental shelf resources that occur beyond the exclusive economic zone.

Responsibility for federal fishery management is shared by the Secretary of Commerce (Secretary) and eight regional fishery management councils that represent the expertise and interests of constituent states. Regional councils are responsible for preparing, monitoring, and revising management plans for fisheries needing management within their jurisdiction. The Secretary is responsible for promulgating regulations to implement proposed plans and amendments after ensuring management measures are consistent with the Magnuson-Stevens Act and with other applicable laws summarized in Appendix A. In most cases, the Secretary has delegated this authority to NMFS.

The Council is responsible for fishery resources in federal waters of the Gulf. These waters extend to 200 nautical miles offshore from the seaward boundaries of the Gulf states of Alabama, Florida, Louisiana, Mississippi, and Texas, as those boundaries have been defined by law. The length of the Gulf coastline is approximately 1,631 miles. Florida has the longest coastline of 770 miles along its Gulf coast, followed by Louisiana (397 miles), Texas (361 miles), Alabama (53 miles), and Mississippi (44 miles).

The Council consists of seventeen voting members: 11 public members appointed by the Secretary; one each from the fishery agencies of Texas, Louisiana, Mississippi, Alabama, and Florida; and one from NMFS. The public is also involved in the fishery management process through participation on advisory panels and through Council meetings that, with few exceptions for discussing personnel matters, are open to the public. The regulatory process is also in accordance with the Administrative Procedures Act, in the form of "notice and comment" rulemaking, which provides extensive opportunity for public scrutiny and comment, and requires consideration of and response to those comments.

Regulations contained within FMPs are enforced through actions of NOAA's Office of Law Enforcement, the United States Coast Guard, and various state authorities. To better coordinate enforcement activities, federal and state enforcement agencies have developed cooperative agreements to enforce the Magnuson-Stevens Act. These activities are being coordinated by the Council's Law Enforcement Advisory Panel and the Gulf States Marine Fisheries Commission's

Law Enforcement Committee, which have developed joint enforcement agreements and cooperative enforcement programs.²⁸

Reef fish stocks are assessed through the SEDAR process. As species are assessed, stock condition and acceptable biological catches are evaluated. As a result, periodic adjustments to stock ACLs and other management measures are deemed needed to prevent overfishing. Management measures are implemented through plan or regulatory amendments.

3.6.2 State Fishery Management

The purpose of state representation at the Council level is to ensure state participation in federal fishery management decision-making and to promote the development of compatible regulations in state and federal waters. The state governments of Texas, Louisiana, Mississippi, Alabama, and Florida have the authority to manage their respective state fisheries. Each of the five Gulf states exercises legislative and regulatory authority over their respective state's natural resources through discrete administrative units. Although each agency is the primary administrative body with respect to the states' natural resources, all states cooperate with numerous state and federal regulatory agencies when managing marine resources. A more detailed description of each state's primary regulatory agency for marine resources is provided on their respective Web pages (Table 3.6.1).

Table 3.6.1 Gulf of Mexico state marine resource agencies and Web pages.

State marine resource agency	Web page
Alabama Marine Resources	http://www.outdooralabama.com/
Division	
Florida Fish and Wildlife	http://myfwc.com/
Conservation Commission	
Louisiana Department of	http://www.wlf.louisiana.gov/
Wildlife and Fisheries	
Mississippi Department of	http://www.dmr.ms.gov/
Marine Resources	
Texas Parks and Wildlife	http://tpwd.texas.gov/
Department	

²⁸ www.gsmfc.org

CHAPTER 4. REFERENCES

Abbott, J.K. 2016. Effects of the two-year exempted fishing permit for the Gulf of Mexico Headboat Collaborative. Report to NOAA Fisheries, 81 p.

Adams, W.F., and C. Wilson. 1995. The status of the smalltooth sawfish, *Pristis pectinata* Latham 1794 (Pristiformes: Pristidae) in the United States. Chondros 6(4):1-5.

Aguilar-Perera, A. 1994. Preliminary observations of the spawning aggregation of Nassau grouper, *Epinephelus striatus*, at Majahual, Quintana Roo, Mexico. Proceedings of the Gulf and Caribbean Fisheries Institute 43:112-122.

Anderes Alvarez, B. L., and I. Uchida. 1994. Study of hawksbill turtle (*Eretmochelys imbricata*) stomach content in Cuban waters. Pages 27-40 *in* Study of the Hawksbill Turtle in Cuba (I). Ministry of Fishing Industry, CUBA. Ministry of Fishing Industry, Cuba.

American Fisheries Society. 2013. Common and Scientific Names of Fishes from the United States, Canada, and Mexico. Seventh Edition. Special Publication 34. Bethesda, MD.

Aprieto, V.L. 1974. Early development of five carangid fishes of the Gulf of Mexico and the south Atlantic coast of the United States. Fishery Bulletin 72:415-443.

Bardach, J.E. 1958. On the movements of certain Bermuda reef fishes. Ecology 39(1):139-146.

Baustian, M.M. and N.N. Rabalais. 2009. Seasonal composition of benthic macroinfauna exposed to hypoxia in the northern Gulf of Mexico. Estuaries and Coasts 32:975–983.

Bigelow, H.B. and W.C. Schroeder. 1953. Sawfishes, guitarfishes, skates and rays. p. 1-514. In J. Tee-Van et al. (eds.) Fishes of the western North Atlantic. Part two. New Haven, Sears Foundation Marine Research, Yale University.

Biggs, D.C., Jochens, A.E., Howard, M.K., DiMarco, S.F., Mullin, K.D., Leben, R.R., Muller-Karger, F.E., & Hu, C. 2005. Eddy forced variations in on- and off-margin summertime circulation along the 1000-m isobath of the northern Gulf of Mexico, 2000–2003, and links with sperm whale distributions along the middle slope. In: W. Sturges & A. Lugo-Fernandez (Eds.), Circulation in the Gulf of Mexico: Observations and models. (Vol. 161). Washington, D.C.: American Geophysical Union.

Bjorndal, K.A. 1980. Nutrition and grazing behavior of the green turtle, *Chelonia mydas*. Marine Biology 56:147-154.

Bjorndal, K.A. 1997. Foraging ecology and nutrition of sea turtles. P. L. Lutz, and J. A. Musick, editors. The Biology of Sea Turtles. CRC Press, Boca Raton.

Bolten, A. B., and G. H. Balazs. 1995. Biology of the early pelagic stage - the 'lost year'. Pages 579-581 *in* K. A. Bjorndal, editor. Biology and Conservation of Sea Turtles. Smithsonian Institution Press, Washington, DC.

Bortone, S.A., P.A. Hastings, and S. B. Collard. 1977. The pelagic-*Sargassum* ichthyofauna of the eastern Gulf of Mexico. Northeast Gulf Science 1:60-67.

Brongersma, L.D. 1972. European Atlantic turtles. Zoologische Verhandelingen (121):1-318.

Bullock, L.H., and G.B. Smith. 1991. Seabasses (Pisces: Serranidae). Florida Marine Research Institute (Part II) Vol. VIII, 243 p.

Burch, R.K. 1979. The greater amberjack, *Seriola dumerili*: its biology and fishery off Southeastern Florida. Master's Thesis. University of Miami, Miami.

Burke, V.J., S.J. Morreale, and A. G. J. Rhodin. 1993. *Lepidochelys kempii* (Kemp's ridley sea turtle) and *Caretta* (loggerhead sea turtle): diet. Herpetological Review 24(1):31-32.

Burton, M. 2008. Southeast U.S. Continental Shelf, Gulf of Mexico, and U.S. Caribbean. *In* Osgood, K. E. (ed). Climate Impacts on U.S. Living Marine Resources: National Marine Fisheries Service Concerns, Activities and Needs. U.S. Dep. Commerce, NOAA Tech. Memo. NMFSF/SPO-89, pp 31-43.

Byles, R. 1988. Satellite Telemetry of Kemp's Ridley Sea Turtle, *Lepidochelys kempi*, in the Gulf of Mexico. Report to the National Fish and Wildlife Foundation: 40 pp.

Carls, M.G., S.D. Rice, and J.E. Hose. 1999. Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (*Clupea pallasi*). Environmental Toxicology and Chemistry 18(3):481–493.

Carr, A. 1986. Rips, fads and little loggerheads. BioScience 36:92-100.

Carr, A. 1987. New perspectives on the pelagic stage of sea turtle development. Conservation Biology 1(2):103-121.

Carter, D.W. 2015. The prices for for-hire marine fishing trips in the Southeastern U.S. Collected from Websites: 2011-2013. NOAA Technical Memorandum NMFS-SEFSC-682. 28 p.

Carter, D.W. 2016. The prices for for-hire marine fishing trips in the Southeastern U.S. Collected from Websites: 2014 and 2015. NOAA Technical Memorandum NMFS-SEFSC-694. 25 p.

- Carter, J., G.J. Marrow, and V. Pryor. 1994. Aspects of the ecology and reproduction of Nassau grouper, *Epinephelus striatus*, off the coast of Belize, Central America. Proceedings of the Gulf and Caribbean Fisheries Institute, 43:65–111.
- Cervigón, F. 1966. Los Peces Marinas de Venezuela. Vols. I and II. Fund. La Salle. Ciencia Naturales.
- Chester, W. 2001. Full box! One hundred years of fishing and boat building in Bay County. Fire in the Water Publishing Company, South port, Florida. 314 p.
- Coleman, F.C., C.C. Koenig, and L.A. Collins. 1996. Reproductive styles of shallow-water groupers (Pisces: Serranidae) in the eastern Gulf of Mexico and the consequences of fishing on spawning aggregations. Environmental Biology of Fishes 47:129-141.
- Colin, P.L. 1992. Reproduction of the Nassau grouper, *Epinephelus striatus* (Pisces: Serranidae) and its relationship to environmental conditions. Environmental Biology of Fishes 34:357-377.
- Colin, P.L., D.Y. Shapiro, and D. Weiler. 1987. Preliminary investigations of reproduction of two species of groupers. *Epinephelus guttatus* and *E. striatus* in the West Indies. Bulletin of Marine Science 40:220-230.
- Colin, P.L., W.A. Laroche, and E.B. Brothers. 1997. Ingress and settlement in the Nassau grouper, *Epinephelus striatus* (Pisces: Serranidae), with relationship to spawning occurrence. Bulletin of Marine Science 60(3):656-667.
- Collins, L. A., G. R. Fitzhugh, L. A. Lombardi-Carlson, H. M. Lyon, W. T. Walling, and D. W. Oliver. 2002. Characterization of red grouper (Serranidae: Epinephelus morio) reproduction from the eastern Gulf of Mexico: 1992-2001. NMFS SEFSC Panama City Lab Contrib. Ser 2002-07. 10 p + 4 tables + 6 figures.
- Courtney, J. M., A. C. Courtney, and M. W. Courtney. 2013. Nutrient loading increases red snapper production in the Gulf of Mexico. Hypotheses in the Life Sciences 3:7-14.
- Craig, J.K. 2012. Aggregation on the edge: effects of hypoxia avoidance on the spatial distribution of brown shrimp and demersal fishes in the Northern Gulf of Mexico. Marine Ecology Progress Series 445: 75–95.
- Dodd, C.K., Jr. 1988. Synopsis of the biological data on the loggerhead sea turtle Caretta (Linnaeus 1758). U.S. Fish and Wildlife Service, Biological Report 88(14). 110 pages.
- Dormeier, M.L., and P.L. Colin. 1997. Tropical reef fish spawning aggregations: defined and reviewed. Bulletin of Marine Science 60:698-726.
- Dooley, J. K. 1972. Fishes associated with the pelagic *sargassum* complex, with a discussion of the *sargassum* community. Contributions in Marine Science 16:1-32.

Eckert, S.A., D.W. Nellis, K.L. Eckert, and G.L. Kooyman. 1986. Diving patterns of two leatherback sea turtles (*Dermochelys coriacea*) during internesting intervals at Sandy Point, St. Croix, U.S. Virgin Islands. Herpetologica 42(3):381-388.

Eckert, S.A., K.L. Eckert, P. Ponganis, and G.L. Kooyman. 1989. Diving and foraging behavior of leatherback sea turtles (*Dermochelys coriacea*). Canadian Journal of Zoology 67(11):2834-2840.

Eggleston D.B. 1995. Recruitment in Nassau grouper *Epinephelus striatus*: post-settlement abundance, microhabitat features and ontogenetic habitat shifts. Marine Ecology Progress Series 124:9-22.

Ehrhart, L.M. and R.G. Yoder. 1978. Marine turtles of Merritt Island National Wildlife Refuge, Kennedy Space Center, Florida. Pages 25–30 in Henderson, G.E. (editor). Proceedings of the Florida and Interregional Conference on Sea Turtles. Florida Marine Research Publications Number 33.

Fahay, MP. 1975. An annotated list of larval and juvenile fishes captured with surface-towed meter net in the South Atlantic Bight during four RV Dolphin Cruises between May 1967 and February 1968. NOAA Technical Report NMFS SSRF-685:1-39.

Fitzhugh, G.R., H.M. Lyon, W.T. Walling, C.F. Levins, and L.A. Lombardi-Carlson. 2006a. An update of Gulf of Mexico red grouper reproductive data and parameters for SEDAR 12. Draft working document for SEDAR 12 Data Workshop. 17p. SEDAR 12-DW-04.

Fitzhugh, G.R., H.M. Lyon, L.A. Collins, W.T. Walling, L. Lombardi-Carlson. 2006b. Update of gag reproductive parameters: Eastern Gulf of Mexico. NMFS Panama City Lab Contribution 05-06. 25p SEDAR10-DW3.

Frazer, T.K., and W.J., Lindberg. 1994. Refuge spacing similarly affects reef-associated species from three phyla. Bulletin of Marine Science 55:388-400.

Frick, J.1976. Orientation and behavior of hatchling green turtles *Chelonia mydas* in the sea. Animal Behavior 24(4):849-857.

GMFMC. 1981. Environmental impact statement and fishery management plan for the reef fish resources of the Gulf of Mexico and environmental impact statement. Gulf of Mexico Fishery Management Council, Tampa, Florida. 328 pp.

 $\frac{http://www.gulfcouncil.org/Beta/GMFMCWeb/downloads/RF\%20FMP\%20and\%20EIS\%20198}{1-08.pdf}$

GMFMC. 2002. Secretarial amendment 2 to the reef fish fishery management plan to set greater amberjack sustainable fisheries act targets and thresholds and to set a rebuilding plan. Gulf of Mexico Fishery Management Council, Tampa, Florida.

http://www.gulfcouncil.org/beta/gmfmcweb/downloads/Secretarial-Amendment-2-RF.pdf

GMFMC. 2003. Final Amendment 21 to the Reef Fish Fishery Management Plan including Regulatory Impact Review, Initial Regulatory Flexibility Analysis, and Environmental Assessment. Gulf of Mexico Fishery Management Council, Tampa, Florida. 215 pp. http://www.gulfcouncil.org/Beta/GMFMCWeb/downloads/Amend21-draft%203.pdf

GMFMC. 2004a. Final environmental impact statement for the generic essential fish habitat amendment to the following fishery management plans of the Gulf of Mexico: shrimp fishery of the Gulf of Mexico, red drum fishery of the Gulf of Mexico, reef fish fishery of the Gulf of Mexico, stone crab fishery of the Gulf of Mexico, coral and coral reef fishery of the Gulf of Mexico, spiny lobster fishery of the Gulf of Mexico and South Atlantic, coastal migratory pelagic resources of the Gulf of Mexico and South Atlantic. Gulf of Mexico Fishery Management Council. Tampa, Florida.

http://www.gulfcouncil.org/Beta/GMFMCWeb/downloads/Final%20EFH%20EIS.pdf

GMFMC. 2004b. Final amendment 23 to the reef fish fishery management plan to set vermilion snapper sustainable fisheries act targets and thresholds and to establish a plan to end overfishing and rebuild the stock, including a final supplemental environmental impact statement and regulatory impact review. Gulf of Mexico Fishery Management Council. Tampa, Florida. 296 pp.

 $\frac{http://www.gulfcouncil.org/Beta/GMFMCWeb/downloads/VS\%2023\%20Oct\%20Final\%2010-21-04\%20with\%20Appendix\%20E.pdf}{2}$

GMFMC. 2004c. Secretarial Amendment 1 to the reef fish management plan to set a 10-year rebuilding plan for red grouper, with associated impacts on gag and other groupers includes environmental assessment, regulatory impact review and final regulatory flexibility analyses. Gulf of Mexico Fishery Management Council. Tampa, Florida. 367 pp. http://www.gulfcouncil.org/Beta/GMFMCWeb/downloads/Secretarial-Amendment-1-RF.pdf

GMFMC. 2005. Final Amendment 18A to the fishery management plan for the reef fish resources of the Gulf of Mexico, including environmental assessment, regulatory impact review, and initial regulatory flexibility analyses. Gulf of Mexico Fishery Management Council. Tampa, Florida. 199 pp.

http://www.gulfcouncil.org/Beta/GMFMCWeb/downloads/Amendment_18A_Final.pdf

GMFMC 2007

GMFMC. 2008a. Amendment 29 to the reef fish fishery management plan – effort management in the commercial grouper and tilefish fisheries including draft environmental impact statement and regulatory impact review. Gulf of Mexico Fishery Management Council. Tampa, Florida. 88 pp.

http://www.gulfcouncil.org/Beta/GMFMCWeb/downloads/Final%20Reef%20Fish%20Amdt%2029-Dec%2008.pdf

GMFMC. 2008b. Final reef fish amendment 30A: greater amberjack – revised rebuilding plan, accountability measures; gray triggerfish – establish rebuilding plan, end overfishing, accountability measures, regional management, management thresholds and benchmarks

including supplemental environmental impact statement, regulatory impact review, and regulatory flexibility act analysis. Gulf of Mexico Fishery Management Council. Tampa, Florida. 346 pp.

http://www.gulfcouncil.org/docs/amendments/Amend-30A-Final%20208.pdf

GMFMC. 2009. Final Amendment 31 to the fishery management plan for reef fish resources in the Gulf of Mexico addresses bycatch of sea turtles in the bottom longline component of the Gulf of Mexico reef fish fishery, includes draft environmental impact statement and regulatory impact review. Gulf of Mexico Fishery Management Council. Tampa, Florida. 261 pp with appendices. http://archive.gulfcouncil.org/docs/amendments/Final%20Amendment%2031%20-%20revised%20-%2002-2010.pdf

GMFMC. 2010a. Final regulatory amendment the reef fish fishery management plan to set total allowable catch for red snapper including revised environmental assessment, regulatory impact review, and regulatory flexibility analysis. Gulf of Mexico Fishery Management Council. Tampa, Florida. 98 pp.

 $\frac{http://www.gulfcouncil.org/docs/amendments/Final\%20Red\%20Snapper\%20Regulatory\%20Amendment\%203_26_10.pdf$

GMFMC. 2011a. Final generic annual catch limits/accountability measures amendment for the Gulf of Mexico fishery management council's red drum, reef fish, shrimp, coral and coral reefs fishery management plans, including environmental impact statement, regulatory impact review, regulatory flexibility analysis, and fishery impact statement. Gulf of Mexico Fishery Management Council. Tampa, Florida. 378 pp.

http://www.gulfcouncil.org/docs/amendments/Final%20Generic%20ACL_AM_Amendment-September%209%202011%20v.pdf

GMFMC. 2011b. Final reef fish amendment 32 – gag grouper – rebuilding plan, annual catch limits, management measures, red grouper – annual catch limits, management measures, and grouper accountability measures. Gulf of Mexico Fishery Management Council. Tampa, Florida http://www.gulfcouncil.org/docs/amendments/Final%20RF32 EIS October 21 2011[2].pdf

GMFMC. 2012a. Final reef fish Amendment 37: Modifications to the gray triggerfish rebuilding plan including adjustments to the annual catch limits and annual catch targets for the commercial and recreational sectors including environmental assessment, fishery impact statement, regulatory impact review, and regulatory flexibility act analysis. Gulf of Mexico Fishery Management Council. Tampa, Florida. 193 pp.

http://gulfcouncil.org/docs/amendments/Final Reef Fish Amend 37 Gray Triggerfish 12 06 12[1].pdf

GMFMC. 2012b. Final amendment 34 to the reef fish fishery management plan for the reef fish resources of the Gulf of Mexico – commercial reef fish permit requirements and crew size on dual-permitted vessels, including an environmental assessment, regulatory impact review, and regulatory flexibility act analysis. Gulf of Mexico Fishery Management Council. Tampa, Florida. 62 pp.

http://gulfcouncil.org/Beta/GMFMCWeb/downloads/Amendment%2034%20-%20Income%20Crew%20Size-%202-6-2012.pdf

GMFMC. 2012c. Final amendment 35 to the reef fish fishery management plan for the reef fish resources of the Gulf of Mexico – modifications to the greater amberjack rebuilding plan and adjustments to the recreational and commercial management measures, including an environmental assessment, fishery impact statement, regulatory impact review, and regulatory flexibility act analysis. Gulf of Mexico Fishery Management Council. Tampa, Florida. 226 pp. http://www.gulfcouncil.org/Beta/GMFMCWeb/downloads/Final_Amendment_35_Greater_Amberjack_Rebuilding_8_May_2012.pdf

GMFMC. 2012d. Final amendment 37 to the reef fish fishery management plan for the reef fish resources of the Gulf of Mexico – Modifications to the gray triggerfish rebuilding plan including adjustments to the annual catch limits and annual catch targets for the commercial and recreational sectors. Gulf of Mexico Fishery Management Council. Tampa, Florida. 193 pp.

http://www.gulfcouncil.org/docs/amendments/Final_Reef_Fish_Amend_37_Gray_Triggerfish_12_06_12[1].pdf

GMFMC. 2013a. Framework action to set the 2013 red snapper commercial and recreational quotas and modify the recreational bag limit. Gulf of Mexico Fishery Management Council, Tampa, Florida. 81 pp.

 $\frac{http://www.gulfcouncil.org/docs/amendments/Red\%20Snapper\%20Framework\%20Action\%20to\%20Set\%202013\%20Quotas.pdf$

GMFMC. 2013b. Red Snapper individual fishing quota program 5-year review. Gulf of Mexico Fishery Management Council, Tampa, Florida. 94 pp.

 $\frac{http://www.gulfcouncil.org/docs/amendments/Red\%20Snapper\%205-year\%20Review\%20FINAL.pdf}{}$

GMFMC. 2016c. Modifications to gag minimum size limits, recreational season and black grouper minimum size limits. Framework action to the fishery management plan for the reef fish resources of the Gulf of Mexico. Gulf of Mexico Fishery Management Council. Tampa, Florida. 117 pp.

http://sero.nmfs.noaa.gov/sustainable_fisheries/gulf_fisheries/reef_fish/2016/gag_and_black_grouper_framework/documents/pdfs/2016_gag_and_black_grouper_framework_ea.pdf

GMFMC. 2014. Final Amendment 40 to the reef fish fishery management plan for the reef fish resources of the Gulf of Mexico – recreational red snapper sector separation. Gulf of Mexico Fishery Management Council, Tampa, Florida. 274 pp.

http://www.gulfcouncil.org/docs/amendments/RF%2040%20-%20Final%2012-17-2014.pdf

GMFMC. 2015a. Final amendment 28 to the reef fish fishery management plan for the reef fish resources of the Gulf of Mexico – red snapper allocation. Gulf of Mexico Fishery Management Council, Tampa, Florida. 302 pp.

 $\frac{http://gulfcouncil.org/docs/amendments/Final\%\,20Red\%\,20Snapper\%\,20Allocation\%\,20-RF\%\,20Amendment\%\,2028.pdf$

GMFMC. 2015b. Standing and special reef fish SSC webinar summary, February 19, 2015. Gulf of Mexico Fishery Management Council, Tampa, Florida. 4 pp. LINK

GMFMC. 2015c. Standing and special reef fish SSC meeting summary, May 20, 2015. Gulf of Mexico Fishery Management Council, Tampa, Florida. 15 pp. LINK

GMFMC. 2016a. Final amendment 45 to the fishery management plan for the reef fish resources of the Gulf of Mexico: Revision of the red snapper recreational sector separation sunset provision. Gulf of Mexico Fishery Management Council. Tampa, FL. 161pp. http://archive.gulfcouncil.org/docs//amendments/RF%2045%20Final.pdf

GMFMC. 2016b. Framework action to the fishery management plan for reef fish resources in the Gulf of Mexico. Adjust red grouper allowable harvest. Gulf of Mexico Fishery Management Council. Tampa, Florida. 117 pp.

 $\underline{http://gulfcouncil.org/docs/amendments/Red\%20Grouper\%20Allowable\%20Harvest\%20Framework\%20Action\%20060716\%20final.pdf}$

GMFMC. 2016c. Modifications to gag minimum size limits, recreational season and black grouper minimum size limits. Framework action to the fishery management plan for the reef fish resources of the Gulf of Mexico. Gulf of Mexico Fishery Management Council. Tampa, Florida. 117 pp.

http://sero.nmfs.noaa.gov/sustainable_fisheries/gulf_fisheries/reef_fish/2016/gag_and_black_grouper_framework/documents/pdfs/2016_gag_and_black_grouper_framework_ea.pdf

GMFMC. 2017a. Minimum stock size threshold (MSST) revision for reef fish stocks with existing status determination criteria final Amendment 44 (revised) to the reef fish resources of the Gulf of Mexico, including environmental assessment, and fishery impact statement. Gulf of Mexico Fishery Management Council. Tampa, Florida. 124 pp.

GMFMC. 2017b. Final amendment 46 to the fishery management plan for the reef fish resources of the Gulf of Mexico: Gray triggerfish rebuilding plan. Gulf of Mexico Fishery Management Council. Tampa, FL. 218p.

http://gulfcouncil.org/wp-content/uploads/Final-Draft-Amend-46 Gray-Triggerfish-Rebuilding-Plan -05 05 2017-1.pdf

GMFMC and SAFMC. 1982. Fishery management plan final environmental impact statement for coral and coral reefs. Gulf of Mexico Fishery Management Council. Tampa, Florida. and South Atlantic Fishery Management Council. Charleston, South Carolina.247 pp. http://www.gulfcouncil.org/Beta/GMFMCWeb/downloads/spiny%20lobster%20fmp/SPL%20FMP%20Final%201982-03.pdf

Gold, J.R., and Richardson, L.R. 1998. Population structure in greater amberjack, Seriola dumerili, from the Gulf of Mexico the western Atlantic Ocean. Fishery bulletin 96(4):767-778.

Goodyear, C.P. 1988. The Gulf of Mexico fishery for reef fish species, a descriptive profile. Unpublished report. National Marine Fisheries Service, Southeast Fisheries Center, Miami Laboratory, CRD 87/88-19.

https://grunt.sefsc.noaa.gov/P_QryLDS/DisplayDocuments.jsp?min_series_code=CR&min_reco_rd_id=935&direction=next&total_rows=2955&description=SEFSC%20Technical%20Memoran_dum#

Gore, R.H. 1992. The Gulf of Mexico: A treasury of resources in the American Mediterranean. Pineapple Press. Sarasota, Florida.

Gunter, G., and L. Knapp. 1951. Fishes, new, rare or seldom recorded from the Texas coast. Texas Journal of Science 3(1):134-138.

Harris, P.J., D.M. Wyanski, D.B. White, P.P. Mikell, P.B. Eyo. 2007. Age, growth, and reproduction of greater amberjack off the southeastern U.S. Atlantic Coast. Transactions of American Fisheries Society 136:1534-1545.

Haensly, W.E., J.M. Neff, J.R. Sharp, A.C. Morris, M.F. Bedgood, and P.D. Beom 1982. Histopathology of *Pleuronectes platessa* from Aber Wrac'h and Aber Benoit, Brittany, France: long-term effects of the Amoco Cadiz crude oil spill. Journal of Fish Disease 5:365-391.

Heemstra, P.C., and J.E. Randall. 1993. Vol. 16. Groupers of the world (Family Serranidae, Subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Fisheries Synopsis, FAO species catalogue 125(16) Rome.

Heintz, R.A., J.W. Short, and S.D. Rice. 1999. Sensitivity of fish embryos to weathered crude oil: Part II. Increased mortality of pink salmon (*Oncorhynchus gorbuscha*) embryos incubating downstream from weathered Exxon *Valdez* crude oil. Environmental Toxicology and Chemistry 18(3):494–503.

Herbig, J.L., and S.T. Szedlmayer. 2016. Movement patterns of gray triggerfish, *Balistes capriscus*, around artificial reefs in the northern Gulf of Mexico. Fisheries Management and Ecology 23:418-417.

Hoese, H.D., and R.H. Moore. 1998. Fishes of the Gulf of Mexico: Texas, Louisiana, and adjacent waters. Texas A&M University Press, College Station, TX. 422 pp.

Hollowed, A.B., Barange, M., Beamish, R., Brander, K., Cochrane, K., Drinkwater, K., Foreman, M., Hare, J., Holt, J., Ito, S-I., Kim, S., King, J., Loeng, H., MacKenzie, B., Mueter, F., Okey, T., Peck, M. A., Radchenko, V., Rice, J., Schirripa, M., Yatsu, A., and Yamanaka, Y. 2013. Projected impacts of climate change on marine fish and fisheries. ICES Journal of Marine Science 70:1023–1037.

- Hood, P.B., and A.K. Johnson. 1997. A study of the age structure, growth, maturity schedules and fecundity of gray triggerfish (*Balistes capriscus*), red porgy (*Pagrus pagrus*), and vermillion snapper (*Rhomboplites aurorubens*) from the eastern Gulf of Mexico. MARFIN Final Report.
- Holland, S.M., A.J. Fedler, and J.W. Milon. 1999. The operations and economics of the charter and head boat fleets of the eastern Gulf of Mexico and South Atlantic coasts. Final report for MARFIN program grant number NA77FF0553. University of Florida, Gainesville, FL.
- Hood, P.B., A.J. Strelcheck, and P. Steele. 2007. A history of red snapper management in the Gulf of Mexico. Pages 267-284 *in* W.F. Patterson, III, J.H. Cowan, D.A. Nieland, and G.R. Fitzhugh, editors. Population ecology and fisheries of U.S. Gulf of Mexico red snapper. American Fisheries Society, Symposium 60, Bethesda, Maryland.
- Hose, J.E., M.D. McGurk, G.D. Marty, D.E. Hinton, E.D Brown, and T.T. Baker. 1996. Sublethal effects of the (Exxon Valdez) oil spill on herring embryos and larvae: morphological, cytogenetic, and histopathological assessments, 1989–1991. Canadian Journal of Fisheries and Aquatic Sciences 53:2355-2365.
- Hughes, G.R. 1974. The sea turtles of south-east Africa. I. Status, morphology and distribution. Oceanogr. Res. Inst. Invest. Rept. No. 35. Durban, South Africa. 144 pp.
- Incardona, J.P., L, D. Gardnerb, T.L. Linbo, T.L. Brown, A.J. Esbaugh, E.M. Mager, J.D. Stieglitz, B.L. French, J.S. Labenia, C.A. Laetz, M. Tagal, C.A. Sloan, A. Elizur, D.D. Benetti, M. Grosell, B.A. Block, and N.L. Scholz. 2014. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proceedings of the National Academy of Sciences of the United States of America 111(15):1510-1518.
- Ingram, G.W. Jr. 2001. Stock structure of gray triggerfish, *Balistes capriscus*, on multiple spatial scales in the Gulf of Mexico. Doctoral dissertation. University of South Alabama, Mobile.
- Ingram, G.W. Jr., and F.W. Patterson. 2001. Movement patterns of red snapper (*Lutjanus campechanus*), greater amberjack (*Seriola dumerili*), and gray triggerfish (*Balistes capriscus*) in the Gulf of Mexico and the utility of marine reserves as management tools. Proceedings of the 52nd Gulf and Caribbean Fisheries Institute 52:686-699.
- Jacob, S., P. Weeks, B. Blount, and M. Jepson. 2013. Development and evaluation of social indicators of vulnerability and resiliency for fishing communities in the Gulf of Mexico. Marine Policy 37:86-95.
- Jepson, M. and L.L. Colburn. 2013. Development of social indicators of fishing community vulnerability and resilience in the U.S. southeast and northeast regions. U.S. Dept. of Commerce., NOAA Technical Memorandum NMFS-F/SPO-129. 64 p.
- Jochens, A., Biggs, D., Benoit-Bird, K., Engelhaupt, D., Gordon, J., Hu, C., Jaquet, N., Johnson, M., Leben, R., Mate, B., Miller, P., Ortega-Ortiz, J., Thode, A., Tyack, P., and Würsig, B. 2008. Sperm whale seismic study in the Gulf of Mexico: Synthesis report. (OCS Study MMS 2008-

006). New Orleans, LA: U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region.

Johnson, A.G., and C.H. Saloman. 1984. Age, growth and mortality of gray triggerfish, *Balistes capriscus*, from the Northeastern Gulf of Mexico. Fishery Bulletin 82:485-492.

Khan, R.A. 1990. Parasitism in Marine Fish after Chronic Exposure to Petroleum Hydrocarbons in the Laboratory and to the Exxon *Valdez* Oil Spill. Bulletin of Environmental Contamination and Toxicology 44:759-763.

Khan, R.A. and J.W. Kiceniuk. 1984. Histopathological effects of crude oil on Atlantic cod following chronic exposure. Canadian Journal of Zoology 62:2038-2043.

Khan R.A. and J.W. Kiceniuk. 1988. Effect of petroleum aromatic hydrocarbons on monogeneids parasitizing Atlantic cod, *Gadus morhua*. Bulletin of Environmental Contamination and Toxicology 41: 94-100.

Kiceniuk J.W. and R.A. Khan. 1987. Effect of petroleum hydrocarbons on Atlantic cod, *Gadus morhua*, following chronic exposure. Canadian Journal of Zoology 65:490-494.

Keinath, J.A., and J.A. Musick. 1993. Movements and diving behavior of a leatherback turtle, *Dermochelys coriacea*. Copeia 1993(4):1010-1017.

Kennedy, V., Twilley, R. Klypas, J. Cowan, J. and Hare, S. 2002. Coastal and marine ecosystems & global climate change: Potential effects on U.S. resources. Prepared for the Pew Center on Global Climate Change.

Kurz, R.C. 1995. Predator-prey interactions between gray triggerfish, *Balistes capriscus* (Gmelin), and a guild of sand dollars around artificial reefs in the northeastern Gulf of Mexico. Bulletin of Marine Science 56:150-160.

Lanyon, J.M., C.J. Limpus, and H., Marsh. 1989. Dugongs and turtles: grazers in the seagrass system. *In:* Larkum, A.W.D, A.J., McComb and S.A., Shepard (eds.) Biology of Seagrasses. Elsevier, Amsterdam, 610.

Limpus, C.J., and N., Nichols. 1988. The southern oscillation regulates the annual numbers of green turtles (*Chelonia mydas*) breeding around northern Australia. Australian Journal of Wildlife Research 15:157.

Limpus, C.J., and N., Nichols. 1994. Progress report on the study of the interaction of El Niño Southern Oscillation on annual *Chelonia mydas* numbers at the southern Great Barrier Reef rookeries. *In:* Proceedings of the Australian Marine Turtle Conservation Workshop, Queensland Australia.

Lingo, M.E., and S.T. Szedlmayer. 2006. The influence of habitat complexity on reef fish communities in the northeastern Gulf of Mexico. Environmental Biology of Fishes 76:71-80.

SEDAR 9. 2006a. Stock assessment report 1 of SEDAR 9: Gulf of Mexico gray triggerfish. Southeast Data, Assessment, and Review. North Charleston, South Carolina. http://www.sefsc.noaa.gov/sedar/.

Lombardi-Carlson. L.A., G.R. Fitzhugh, B.A. Fable, M. Ortiz, C. Gardner. 2006b. Age, length and growth of gag from the NE Gulf of Mexico 1979-2005. NMFS Panama City Lab Contribution 06-03.57 p. SEDAR10-DW2.

Lutz, P.L., J.A. Musick, and J. Wyneken. 2003. The Biology of Sea Turtles. Volume II. CRC Press, Inc., Washington, D.C.

Lutz, P.L., and J.A. Musick, editors. 1997. The biology of sea turtles. CRC Press, Boca Raton, Florida.

Márquez-M, R. 1994. Synopsis of biological data on the Kemp's ridley turtle, *Lepidochelys kempii* (Garman 1880). U. S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida.

McEachran, J.D. and J.D. Fechhelm. 2005. Fishes of the Gulf of Mexico, Vol. 2. University of Texas Press. Austin, Texas.

Mendelssohn, I.A., G.L. Andersen, D.M. Baltz, R.H. Caffey, K.R. Carman, J.W. Fleeger, S.B. Joye, Q. Lin, E. Maltby, E.B. Overton, and L.P. Rozas. 2012. Oil Impacts on Coastal Wetlands: Implications for the Mississippi River Delta Ecosystem after the *Deepwater Horizon* Oil Spill. BioScience 62:562–574.

Mendonca, M.T., and P.C.H. Pritchard. 1986. Offshore movements of post-nesting Kemp's ridley sea turtles (*Lepidochelys kempii*). Herpetologica 42:373-380.

Meylan, A. 1984. Feeding ecology of the hawksbill turtle *Eretmochetys imbricata*: Spongivory as a feeding niche in the coral reef community. Unpublished Ph.D. Dissertation. University of Florida; Gainesville, Florida.

Meylan, A. 1988. Spongivory in hawksbill turtles: a diet of glass. Science 239:393-395.

Meylan, A.B., and M. Donnelly. 1999. Status justification for listing the hawksbill turtle (Eretmochelys imbricata) as critically endangered on the 1996 IUCN Red List of Threatened Animals. Chelonian Conservation and Biology 3(2):200-204.

Moe, M.A., Jr. 1969. Biology of red grouper (Epinephelus morio Valenciennes) from the eastern Gulf of Mexico. Prof. Pap. Ser. Mar. Lab. Fla. 10, 95 p.

Moore. J.L. 2001. Age, growth and reproductive biology of the gray triggerfish (*Balistes capriscus*) from the southeastern United States, 1992-1997. Master's thesis, University of Charleston, Charleston, South Carolina. 99 pp.

Mortimer, J.A. 1981. The feeding ecology of the west Caribbean green turtle (*Chelonia mydas*) in Nicaragua. Biotropica 13(1):49-58.

Mortimer, J.A. 1982. Feeding ecology of sea turtles. Pages 103-109 *in* K. A. Bjorndal, editor. Biology and Conservation of Sea Turtles. Smithsonian Institution Press, Washington D.C.

Murawski, S,A., W.T. Hogarth, E B. Peebles, and L. Barbeiri. 2014. Prevalence of external skin lesions and polycyclic aromatic hydrocarbon concentrations in Gulf of Mexico fishes, post-Deepwater Horizon. Transactions of the American Fisheries Society 143(4):1084-1097.

Murie, D.J., and D.C. Parkyn. 2008. Age, Growth and Sex Maturity of Greater Amberjack (*Seriola dumerili*) in the Gulf of Mexico. MARFIN Final Report NA05NMF4331071, 52 pp.

Murie, D.J., D.C. Parkyn and J. Austin. 2011. Seasonal movement and mixing rates of greater amberjack in the Gulf of Mexico and assessment of exchange with the South Atlantic spawning stock. SEDAR33-DW12:46.

NMFS. 2010. Population projections of Gulf of Mexico red and gag grouper with preliminary 2009 landings estimates. NOAA's National Marine Fisheries Service, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida. 5 pp.

NMFS. 2010. Environmental assessment, regulatory impact review, and regulatory flexibility act analysis for a temporary rule to implement measures to limit the Gulf of Mexico gag commercial and recreational harvests and suspend the red grouper individual fishing quota multi-use allocation. National Marine Fisheries Service, Southeast Regional Office. St. Petersburg, Florida

NMFS. 2011. Biological opinion on the continued authorization of reef fish fishing under the Gulf of Mexico Reef Fish Fishery Management Plan. http://sero.nmfs.noaa.gov/protected resources/section 7/freq biop/documents/fisheries bo/0358 4_gom_reef_fish_biop_2011_final.pdf

NOAA. 2010. Deepwater Horizon Oil: Characteristics and concerns. NOAA Office of Response and Restoration, Emergency Response Division. 2 p. http://sero.nmfs.noaa.gov/deepwater-horizon/documents/pdfs/fact-sheets/oil-characteristics.pdf

Norman, J.R., and F.C. Fraser. 1938. Giant fishes, whales and dolphins. W.W. Norton and Company, Inc., New York, NY. 361 pp.

Ogren, L.H. 1989. Distribution of juvenile and subadult Kemp's ridley sea turtles: preliminary results from 1984-1987 surveys. Pages 116-123 *in* C. W. Caillouet Jr., and J. A.M. Landry, editors. Proceedings of the First International Symposium on Kemp's Ridley Sea Turtle Biology, Conservation, and Management. Texas A&M University Sea Grant College, Galveston, Texas.

Osgood, K.E. (ed.) 2008. Climate impacts on U. S. living marine resources: National Marine Fisheries Services concerns, activities and needs. Silver Spring, Maryland, National Oceanic and Atmospheric Administration, 118pp. (NOAA Technical Memorandum NMFS-F/SPO, 89).

Paredes, R.P. 1969. Introduccion al Estudio Biologico de *Chelonia mydas agassizi* en el Perfil de Pisco, Master's thesis, Universidad Nacional Federico Villareal, Lima, Peru.

Parrack, N.C. and D.B. McClellan. 1986. Trends in Gulf of Mexico red snapper population dynamics, 1979-85. National Marine Fisheries Service, Southeast Fisheries Center, Miami, Florida. Coastal Resources Division Contribution No. CRD-86/87-4. 116 p.

Radakov, D. V., A.D. Motchek, Y.N. Sbikin, R. Claro Madruga, and A. Silva Lee. 1975. Acerca de la longitud de los peces comerciales en capturas de la zona noroccidental de Cuba. Serie Oceanologica. No. 28. Academia de Ciencias de Cuba. Instituto de Oceanologia. Habana. Cuba, 9 pp.

Rico-Martínez, R., T.W. Snell, and T.L. Shearer. 2013. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A® to the *Brachionus plicatilis* species complex (Rotifera). Environmental Pollution 173:5-10.

Robins, C.R., G.C. Rey, and J. Douglass. 1986. A field guide to Atlantic coast fishes. Houghton Mifflin Co., New York City, NY. 354 p.

Savolainen, M.A., R.H. Caffey, and R F. Kazmierczak, Jr. 2012. Economic and attitudinal perspectives of the recreational for-hire fishing industry in the U.S. Gulf of Mexico. Center for Natural Resource Economics and Policy, LSU Ag Center and Louisiana Sea Grant College Program, Department of Agricultural Economics and Agribusiness, Louisiana State University, Baton Rouge, LA. 171 p. Available at: http://www.laseagrant.org/wp-content/uploads/Gulf-RFH-Survey-Final-Report-2012.pdf

Schirripa, M.J. and C.P. Goodyear. 1994. Status of the gag stocks of the Gulf of Mexico: Assessment 1.0. NMFS SEFSC Miami Lab MIA-94/94-61. 155 pp.

Schirripa, M. J., and C. M. Legault. 1999. Status of the red snapper fishery in the Gulf of Mexico: Updated through 1998. SFD-99/00-75. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center. Miami, Florida.

SEDAR 9 2006. Stock assessment report 2 for Gulf of Mexico greater amberjack. Southeast Data, Assessment, and Review. North Charleston, South Carolina. http://www.sefsc.noaa.gov/sedar/.

SEDAR 9 Update. 2011b. SEDAR update stock assessment of gray triggerfish in the Gulf of Mexico. Southeast Data, Assessment, and Review. North Charleston, South Carolina. http://www.sefsc.noaa.gov/sedar/

SEDAR. 2009. Stock assessment of gag in the Gulf of Mexico – SEDAR update assessment. Report of assessment workshop, Miami, FL, March 30-April 2, 2009. 171 p.

SEDAR 10 Gulf of Mexico Gag Grouper Stock Assessment Report. (http://www.sefsc.noaa.gov/sedar/), Charleston, South Carolina. 250 p.

SEDAR 10 Update. 2009. Stock assessment of gag in the Gulf of Mexico. – SEDAR update assessment. Southeast Data, Assessment, and Review. North Charleston, South Carolina. http://sedarweb.org/docs/suar/Gag_2009_Assessment_Update_Report.pdf

SEDAR 12. 2007. SEDAR12-Complete Stock Assessment Report 1: Gulf of Mexico Red Grouper. SEDAR (http://www.sefsc.noaa.gov/sedar/), Charleston, South Carolina SEDAR 19. 2010. Stock assessment report Gulf of Mexico and South Atlantic black grouper. Southeast Data, Assessment, and Review. North Charleston, South Carolina. 661 pp. http://sedarweb.org/docs/sar/Black_SAR_FINAL.pdf

SEDAR 15A Update. 2015. Stock assessment of mutton snapper (*Lutjanus analis*) of the U.S. south Atlantic and Gulf of Mexico through 2013 – SEDAR update assessment. Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida. 142 pp. http://sedarweb.org/docs/suar/SEDAR%20Update%20Stock%20Assessment%20of%20Mutton%20Snapper%202015_FINAL.pdf

SEDAR 22. 2011a. Stock assessment report Gulf of Mexico tilefish. Southeast Data, Assessment, and Review. North Charleston, South Carolina. http://sedarweb.org/docs/sar/tilefish_SAR_FINAL.pdf

SEDAR 22. 2011b. Stock assessment report Gulf of Mexico yellowedge grouper. Southeast Data, Assessment, and Review. North Charleston, South Carolina. http://sedarweb.org/docs/sar/YEG_final_SAR.pdf

SEDAR 31. 2013. Stock assessment report Gulf of Mexico red snapper. Southeast Data, Assessment, and Review. North Charleston, South Carolina. 1103 pp. http://sedarweb.org/docs/sar/SEDAR%2031%20SAR-%20Gulf%20Red%20Snapper_sizereduced.pdf

SEDAR 31 Update. 2014. Stock assessment of red snapper in the Gulf of Mexico 1872 – 2013 - with provisional 2014 landings. Southeast Data, Assessment, and Review. North Charleston, South Carolina. 242 pp.

http://sedarweb.org/docs/suar/SEDARUpdateRedSnapper2014_FINAL_9.15.2015.pdf

SEDAR 33. 2014a. Stock assessment report Gulf of Mexico gag. Southeast Data, Assessment, and Review. North Charleston, South Carolina. http://www.sefsc.noaa.gov/sedar/.

SEDAR 33 Update. 2016b. Update report Gulf of Mexico Gag Grouper. SEDAR, North Charleston SC. 123 pp.

http://sedarweb.org/docs/suar/GagUpdateAssessReport_Final_0.pdf

SEDAR 42. 2015. Gulf of Mexico red grouper stock assessment report. Southeast Data, Assessment, and Review. North Charleston, South Carolina. 612 pp. http://sedarweb.org/docs/sar/SEDAR_38_Gulf_SAR.pdf

SEDAR 43. 2015. Gulf of Mexico gray triggerfish. Southeast Data, Assessment, and Review. North Charleston, South Carolina. http://sedarweb.org/sedar-43

SEDAR 45. 2016. Stock assessment report Gulf of Mexico vermilion snapper. Southeast Data, Assessment, and Review. North Charleston, South Carolina. 188 pp. http://sedarweb.org/docs/sar/S45_Final_SAR.pdf

SEDAR 49. 2016. SEDAR 49 Stock Assessment Report on Gulf of Mexico Data-limited Species. Southeast Data, Assessment, and Review, Charleston, South Carolina. 618 pp. http://sedarweb.org/sedar-49-final-stock-assessment-report-gulf-mexico-data-limited-species.

Shaver, D.J. 1991. Feeding Ecology of Wild and Head-Started Kemp's Ridley Sea Turtles in South Texas Waters. Journal of Herpetology 25(3):327-334.

Shipp, R.L and S.A. Bortone. 2009. A perspective on the importance of artificial habitat on the management of red snapper in the Gulf of Mexico. Reviews in Fisheries Science 17:41-47.

Short, J. 2003. Long-term effects of crude oil on developing fish: Lessons from the Exxon *Valdez* oil spill. Energy Sources 25(6):509-517.

Silva Lee, A.F. 1974. Hábitos alimentarios de la cherna criolla *Epinephelus striatus* Bloch y algunos datos sobre su biologia. Serie Oceanologica Academia de Ciencias de Cuba 25:3-14.

Simmons, C.M., and S.T. Szedlmayer. 2011. Recruitment of age-0 gray triggerfish to benthic structured habitat in the northern Gulf of Mexico. Transactions of the American Fisheries Society 140:14-20.

Simmons, C.M., and S.T. Szedlmayer. 2012. Territoriality, reproductive behavior, and parental care in gray triggerfish, *Balistes capriscus*, from the northern Gulf of Mexico. Bulletin of Marine Science 88:197-209.

Simmons, C.M., and S.T. Szedlmayer. 2013. Description of reared preflexion gray triggerfish, Balistes capriscus, larvae from the northern Gulf of Mexico. Bulletin of Marine Science 89: 643-652.

Simpfendorfer, C.A. 2001. Essential habitat of the smalltooth sawfish, *Pristis pectinata*. Report to the National Fisheries Service's Protected Resources Division. Mote Marine Laboratory, Technical Report (786) 21pp.

Sindermann, C.J. 1979. Pollution-associated diseases and abnormalities of fish and shellfish: a review. Fisheries Bulletin 76:717-749.

Smith, C. L. 1971. A spawning aggregation of Nassau grouper, *Epinephelus striatus* (Bloch). Transactions of the American Fisheries Society 101:257-261.

Snyder, Susan M., E.L. Pulster, D.L. Wetzel, and S.A. Murawski. 2015. PAH exposure in Gulf of Mexico demersal fishes, post-Deepwater Horizon. Environmental Science and Technology 49(14):8786–8795. DOI: 10.1021/acs.est.5b01870 https://gulfseagrant.files.wordpress.com/2015/09/oil-spill-seminar-gulf-seafood-synder.pdf

Solangi, M.A. and R.M. Overstreet. 1982. Histopathological changes in two estuarine fishes, Menidia beryllina (Cope) and Trinectes maculatus (Bloch and Schneider), exposed to crude oil and its water-soluble fractions. Journal of Fish Disease 5(1):13-35.

Soma, M. 1985. Radio biotelemetry system applied to migratory study of turtle. Journal of the Faculty of Marine Science and Technology, Tokai University, Japan, 21:47.

Standora, E.A., J.R. Spotila, J.A. Keinath, and C.R. Shoop. 1984. Body temperatures, diving cycles, and movement of a subadult leatherback turtle, *Dermochelys coriacea*. Herpetologica 40:16.

Starr, R.M., E. Sala, E. Ballesteros, and M. Zabala. 2007. Spatial dynamics of the Nassau grouper Epinephelus striatus in a Caribbean atoll. Marine Ecology Progress Series, 343:239-249.

Strelcheck, A.J., G.R. Fitzhugh, F.C. Coleman, C.C. Koenig. 2003. Otolith-fish size relationship in juvenile gag (*Mycteroperca microlepis*) of the eastern Gulf of Mexico; A comparison of growth rates between laboratory and field populations. Fisheries Research 60 (2-3):255-265.

Sutton, S.G., R.B. Ditton, J.R. Stoll, and J.W. Milon. 1999. A cross-sectional study and longitudinal perspective on the social and economic characteristics of the charter and party boat fishing industry of Alabama, Mississippi, Louisiana, and Texas. Report by the Human Dimensions of Recreational Fisheries Research Laboratory, Texas A&M University, MARFIN program grant number NA77FF0551.

Swedmark, M., A. Granmo, and S. Kollberg. 1973. Effects of oil dispersants and oil emulsions on marine animals. Water Research 7(11): 1649-1672.

Tarnecki, J.H. and W.F. Patterson III. 2015. Changes in Red Snapper Diet and Trophic Ecology. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 7: 135–147.

Thayer, G.W., K.A., Bjorndal, J.C., Ogden, S.L., Williams, and J.C., Zieman. 1984. Role of large herbivores in seagrass communities. Estuaries 7:351.

Thompson, R., and J.L. Munro. 1978. Aspects of the biology and ecology of Caribbean reef fishes: Serranidae (hinds and groupers). Journal of Fish Biology, 12:115-146.

Tucker, J.W., P.G. Bush, and S.T. Slaybaugh. 1993. Reproductive patterns of Cayman Islands Nassau grouper (*Epinephelus striatus*) populations. Bulletin of Marine Science. 52(3):961–969.

Tucker, J.W., Jr., and P.N. Woodward. 1994. Growth and development of domestic juvenile Nassau groupers. Proceedings of the Gulf and Caribbean Fisheries Institute. 43:389-391.

Turner, S.C., N.J. Cummings, and C.P. Porch. 2000. Stock assessment of Gulf of Mexico greater amberjack using data through 1998. NOAA, NMFS, SEFSC, 75 Virginia Beach Drive, Miami, Florida 33149. SFD-99/00-100.

van Dam, R.P., and C.E. Díez. 1998. Home range of immature hawksbill turtles (*Eretmochelys imbricata* (Linnaeus) at two Caribbean islands. Journal of Experimental Marine Biology and Ecology 220(1):15-24.

Vose, F.E., and W.G. Nelson. 1994. Gray triggerfish (*Balistes capriscus* Gmelin) feeding from artificial and natural substrate in shallow Atlantic waters of Florida. Bulletin of Marine Science 55:1316-1323.

Walker, T. 1994. Post-hatchling dispersal of sea turtles. Proceedings of the Australian Marine Turtle Conservation Workshop 1994:79-94.

Walter, J. 2011. Rerun of Gulf of Mexico red grouper assessment and projections with observerderived discard estimates (revised). NOAA National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida. 19 p.

Waring, G.T., E. Josephson, K. Maze-Foley, and P.E. Rosel. 2013. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments-2012, Volume 1. 425 pp.

Waring, G.T., E. Josephson, K. Maze-Foley, and P.E. Rose (eds.). 2016. US Atlantic and Gulf of Mexico marine mammal stock assessments – 2015. NOAA Technical Memorandum NMFS-NE-238. 501 p. http://www.nmfs.noaa.gov/pr/sars/pdf/atlantic2015_final.pdf

Wells, R.J.D., and J.R. Rooker. 2002. Distribution, age, and growth of young-of-the-year greater amberjack (*Seriola dumerili*) associated with pelagic Sargassum. Fishery Bulletin 102:545-554.

Wells, R.J.D., and J.R. Rooker. 2004. Spatial and temporal patterns of habitat use by fishes associated with *Sargassum* mats in the northwestern Gulf of Mexico. Bulletin of Marine Science 74:81–99.

Whitehead A, Dubansky B, Bodinier C, Garcia TI, Miles S et al. 2011. Genomic and

physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proceedings of the National Academy of Science. 109(50):20298–20302

Wilson, D., R. Billings, R. Chang, S. Enoch, B. Do, H. Perez, and J. Sellers. 2017. Year 2014 Gulf wide emissions inventory study. US Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEM 2017-044, 275 pp.

Wilson C.A., D.L. Nieland, and A.L. Stanley. 1995. Age, growth, and reproductive biology of gray triggerfish, *Balistes capriscus*, from the Northern Gulf of Mexico commercial harvest. MARFIN Final Report. Louisiana State University, Baton Rouge, Louisiana.

Wilson, D., R. Billings, R. Chang, S. Enoch, B. Do, H. Perez, and J. Sellers. 2017. Year 2014 Gulf wide emissions inventory study. US Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEM 2017-044, 275 pp.

Witzell, W.N. 2002. Immature Atlantic loggerhead turtles (*Caretta caretta*): suggested changes to the life history model. Herpetological Review 33(4):266-269.

Wyneken, J., K.J. Lohmann, and J.A. Musick. 2013. The Biology of Sea Turtles, Volume III. CRC Marine Biology Series (Book 14). CRC Press. 475 p.

APPENDIX A: OTHER APPLICABLE LAW

The Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act) (16 U.S.C. 1801 et seq.) provides the authority for fishery management in federal waters of the Exclusive Economic Zone. However, fishery management decision-making is also affected by a number of other federal statutes designed to protect the biological and human components of U.S. fisheries, as well as the ecosystems that support those fisheries. Major laws affecting federal fishery management decision-making include the Endangered Species Act (Section 3.3.3), E.O. 12866 (Regulatory Planning and Review, Chapter 5) and E.O. 12898 (Environmental Justice, Section 3.5). Other applicable laws are summarized below.

Administrative Procedures Act

All federal rulemaking is governed under the provisions of the Administrative Procedure Act (APA) (5 U.S.C. Subchapter II), which establishes a "notice and comment" procedure to enable public participation in the rulemaking process. Under the APA, the National Marine Fisheries Service (NMFS) is required to publish notification of proposed rules in the *Federal Register* and to solicit, consider, and respond to public comment on those rules before they are finalized. The APA also establishes a 30-day waiting period from the time a final rule is published until it takes effect. Proposed and final rules will be published before implementing the actions in this amendment.

Coastal Zone Management Act

Section 307(c)(1) of the federal Coastal Zone Management Act of 1972 (CZMA), as amended, requires federal activities that affect any land or water use or natural resource of a state's coastal zone be conducted in a manner consistent, to the maximum extent practicable, with approved state coastal management programs. The requirements for such a consistency determination are set forth in NOAA regulations at 15 CF.R. part 930, subpart C. According to these regulations and CZMA Section 307(c)(1), when taking an action that affects any land or water use or natural resource of a state's coastal zone, NMFS is required to provide a consistency determination to the relevant state agency at least 90 days before taking final action.

Upon submission to the Secretary, NMFS will determine if this plan amendment is consistent with the Coastal Zone Management programs of the states of Alabama, Florida, Louisiana, Mississippi, and Texas to the maximum extent possible. The determination will then be submitted to the responsible state agencies under Section 307 of the CZMA administering approved Coastal Zone Management programs for these states.

Data Quality Act (DQA)

The DQA (Public Law 106-443) effective October 1, 2002, requires the government to set standards for the quality of scientific information and statistics used and disseminated by federal agencies. Information includes any communication or representation of knowledge such as facts or data, in any medium or form, including textual, numerical, cartographic, narrative, or audiovisual forms (includes web dissemination, but not hyperlinks to information that others disseminate; does not include clearly stated opinions).

Specifically, the Act directs the Office of Management and Budget (OMB) to issue government wide guidelines that "provide policy and procedural guidance to federal agencies for ensuring and maximizing the quality, objectivity, utility, and integrity of information disseminated by federal agencies." Such guidelines have been issued, directing all federal agencies to create and disseminate agency-specific standards to: 1) ensure information quality and develop a pre-dissemination review process; 2) establish administrative mechanisms allowing affected persons to seek and obtain correction of information; and 3) report periodically to OMB on the number and nature of complaints received.

Scientific information and data are key components of fishery management plans (FMPs) and amendments and the use of best available information is the second national standard under the Magnuson-Stevens Act. To be consistent with the Magnuson-Stevens Act, FMPs and amendments must be based on the best information available. They should also properly reference all supporting materials and data, and be reviewed by technically competent individuals. With respect to original data generated for FMPs and amendments, it is important to ensure that the data are collected according to documented procedures or in a manner that reflects standard practices accepted by the relevant scientific and technical communities. Data presented in this amendment has undergone quality control prior to being used by the agency and will be subject to a pre-dissemination review.

National Historic Preservation Act (NHPA)

The NHPA of 1966 (Public Law 89-665; 16 U.S.C. 470 *et seq.*) is intended to preserve historical and archaeological sites in the United States of America. Section 106 of the NHPA requires federal agencies to evaluate the impact of all federally funded or permitted projects for sites on listed on, or eligible for listing on, the National Register of Historic Places and aims to minimize damage to such places.

Historical research indicates that over 2,000 ships have sunk on the Federal Outer Continental Shelf from 1625 to 1951; thousands more have sunk closer to shore in state waters during the same period. Only a handful of these have been scientifically excavated by archaeologists for the benefit of generations to come. Further information can be found at: http://www.boem.gov/Environmental-Stewardship/Archaeology/Shipwrecks.aspx

The proposed action does not adversely affect districts, sites, highways, structures, or objects listed in or eligible for listing in the National Register of Historic Places nor is it expected to cause loss or destruction of significant scientific, cultural, or historical resources. In the Gulf, the *U.S.S. Hatteras*, located in federal waters off Texas, is listed in the National Register of Historic Places. Fishing activity already occurs in the vicinity of this site, but the proposed action would have no additional adverse impacts on listed historic resources, nor would they alter any regulations intended to protect them.

Executive Orders

E.O. 12630: Takings

The Executive Order on Government Actions and Interference with Constitutionally Protected Property Rights that became effective March 18, 1988, requires each federal agency prepare a

Takings Implication Assessment for any of its administrative, regulatory, and legislative policies and actions that affect, or may affect, the use of any real or personal property. Clearance of a regulatory action must include a takings statement and, if appropriate, a Takings Implication Assessment. The NOAA Office of General Counsel will determine whether a Taking Implication Assessment is necessary for this amendment.

E.O. 13089: Coral Reef Protection

The Executive Order on Coral Reef Protection requires federal agencies whose actions may affect U.S. coral reef ecosystems to identify those actions, utilize their programs and authorities to protect and enhance the conditions of such ecosystems, and, to the extent permitted by law, ensure actions that they authorize, fund, or carry out do not degrade the condition of that ecosystem. By definition, a U.S. coral reef ecosystem means those species, habitats, and other national resources associated with coral reefs in all maritime areas and zones subject to the jurisdiction or control of the United States (e.g., federal, state, territorial, or commonwealth waters).

Regulations are already in place to limit or reduce habitat impacts within the Flower Garden Banks National Marine Sanctuary. Additionally, NMFS approved and implemented Generic Amendment 3 for Essential Fish Habitat, which established additional HAPCs and gear restrictions to protect corals throughout the Gulf of Mexico. There are no implications to coral reefs by the actions proposed in this amendment.

E.O. 13132: Federalism

The Executive Order on Federalism requires agencies in formulating and implementing policies, to be guided by the fundamental Federalism principles. The Order serves to guarantee the division of governmental responsibilities between the national government and the states that was intended by the framers of the Constitution. Federalism is rooted in the belief that issues not national in scope or significance are most appropriately addressed by the level of government closest to the people. This Order is relevant to FMPs and amendments given the overlapping authorities of NMFS, the states, and local authorities in managing coastal resources, including fisheries, and the need for a clear definition of responsibilities. It is important to recognize those components of the ecosystem over which fishery managers have no direct control and to develop strategies to address them in conjunction with appropriate state, tribes and local entities (international too). No Federalism issues have been identified relative to the action proposed in this amendment. Therefore, consultation with state officials under Executive Order 12612 is not necessary.

APPENDIX B: HEADBOAT AP MEETING SUMMARIES

Motions Report for the Ad Hoc Headboat Reef Fish Advisory Panel Tampa, FL May 3-4, 2016

Panel Members	Council and Staff	Attendance-Others
Pam Anderson	Pam Dana	Ken Anderson
Randy Boggs	Assane Diagne	Susan Gerhart
Clifton Cox	Ava Lasseter	Tim Hobbs
James Green	Charlotte Schiaffo	Britni LaVine
Chad Haggert	Carrie Simmons	Rich Malinowski
Mark Hubbard		Jessica Stephen
Charles Paprocki		Andy Strelcheck
Eric Schmidt		Mike Travis
Skipper Thierry		Daniel Willard
Dustin Trochesset		
John Williams		

Recommendations provided by the Advisory Panel are detailed below. Failed or withdrawn motions are listed at the end of this report. In addition to the motions report, verbatim minutes are provided in **Tab B**, **No. 12(b)**.

Motion: The AP recommends that the headboat component be managed by establishing an IFQ program to be implemented by referendum vote of the Gulf headboats that participate in the SE headboat survey program with a 1-federal permit, 1-vote status.

Motion passed 7-2, with 1 abstention.

Motion: The AP moves to make Preferred Alternative 3 (In Action 2): *Include red snapper, gray triggerfish, greater amberjack, gag, and red grouper in the management program,* the alternative.

Motion passed 9-1.

Motion: The AP moves to make Alternative 1 (in Action 3) - No Action. *All HBSV as of December 31, 2015 must participate in the program*, the Preferred Alternative.

Motion passed 7-1, with 2 abstentions.

Motion: The AP moves to make Alternative 2, (in Action 4) - *Establish an endorsement for HBSV*, the Preferred Alternative. **Motion passed unanimously.**

121

Motion: The AP moves to have Alternative 4, Option a (in Action 5) be the Preferred Alternative.

Motion passed unanimously.

Motion: The AP moves that in Action 6 a new Alternative, 3, be added that distributes pounds to the shareholder account and distributes fish for each vessel in accordance to the port average weight of each species.

Motion passed unanimously.

Motion: The AP moves to make Alternative 4 (In Action 7.1), For each species, the apportionment is based on the most recent five years (2011-2015) omitting the year with the lowest landings, as the Preferred Alternative.

Motion passed 10-1.

Motion: The AP moves that Alternative 3 in Action 7.2 be moved to considered, but rejected. **Motion passed unanimously.**

Motion: The AP moves to reconsider the previous motion passed on Action 7.1. **Motion passed 9-1, with 1 abstention.**

Motion: The AP moves that Alternative 5, For each species, the apportionment is based on the year with the highest landings during the most recent five years (2011-2015), in Action 7.1, be the Preferred Alternative.

Motion passed unanimously.

Motion: The AP moves that Alternative 2, (Option b), Distribute 25% of initial shares for each species equally among HBSV permit holders participating in the program and distribute 75% of the initial shares proportionally, in Action 7.2 be the Preferred Alternative.

Substitute Motion: The AP moves that Alternative 2, (Option a), *Distribute 0% of initial shares* for each species equally among HBSV permit holders participating in the program and distribute 100% of the initial shares proportionally, in Action 7.2 be the Preferred Alternative.

Substitute Motion passed with 3 abstentions.

Motion: The AP moves that Alternative 2, Require a valid reef fish for-hire permit with HBSV endorsement, or a reef fish headboat permit (whichever is established in Action 4) to receive shares through transfer. Shares can only be transferred to US citizens or permanent resident aliens, be the Preferred Alternative in Action 8.

Motion passed unanimously.

Motion: The AP moves to have Alternative 2, In Action 9, *To hold shares, require a reef fish for-hire permit with HBSV endorsement, or a reef fish headboat permit (whichever is established in Action 4). Shares can only be held by US citizens or permanent resident aliens. IFQ: If a participant transfers their permit or the permit expires, the owner must divest of their shares. PFQ: If a permit is transferred, the shares automatically transfer with it; if a permit terminates,*

122

NMFS will redistribute the shares proportionally to the current participants, be the Preferred Alternative.

Motion passed unanimously.

Motion: The AP moves to have Alternative 2 in Action 10, Require a valid reef fish for-hire permit with HBSV endorsement or a valid reef fish headboat permit (whichever is established) to receive annual allocation through transfer. Transfers to US citizens or permanent resident aliens, be the Preferred Alternative.

Motion passed unanimously.

Motion: The AP moves to have Alternative 2, in Action 11, *In each species category, no person shall own more shares than the maximum percentage issued to the recipient of the largest shares at the time of the initial apportionment of shares,* be the Preferred Alternative **Motion passed unanimously.**

Motion: The AP moves to have Alternative 1 in Action 12, *No Action. Do not constrain the amount of allocation that one person can hold*, be the Preferred Alternative.

Substitute Motion: The AP moves to have Alternative 2 in Action 12, *Each person's total holdings (from all accounts) cannot be more than the maximum holdings attributed to a person (as determined in Action 11) in each species category at any point in time,* be the Preferred Alternative.

Substitute Motion passed 6-5.

Motion: The AP moves to request that Council make Alternative 2 (option a) in Action 13, *Only distribute allocation during the year in which a quota increases. If the quota for a species increases within a year, distribute the increased allocation to all participants holding shares for that species on or near the effective date of the increase, based on the option chosen.*

Option a. Distribute the allocation increase <u>proportionally</u> to all participants holding shares for that species based on shareholdings when the increase is effective, be the Preferred Alternative.

Motion passed unanimously.

Motion: The AP moves that Alternative 5 in Action 13, *If the quota for a species is anticipated to decrease, the RA has the authority to hold back the anticipated amount of decrease during distribution of allocation for that species at the beginning of the year. If the decrease does not occur, the amount held back will be distributed as soon as possible,* be the Preferred Alternative. **Motion passed 8-2, with 1 abstention.**

Motion: The AP moves to support cost recovery as required by the MSA. The AP would like the Council's input on the cost recovery to the extent required. **Motion passed 9-2.**

Motion: The AP moves to add a new Action, with Alternative 3, as the Preferred Alternative, to allow a provision for new entrants at the beginning of each calendar year, vessels with valid federal Gulf for-hire reef fish permits that are not participating in the HBSV program are eligible to apply for an endorsement to the reef fish for-hire permit or for a reef fish headboat permit (whichever is established in Action 4) if the vessels are selected to participate in the Southeast Region Headboat Survey. This would be limited to vessels that carry over 49 passengers.

Motion passed 10-1.

Motion: That the Council reconvene this AP once they have a chance to go through this document.

Motion passed unanimously.

FAILED or WITHDRAWN MOTIONS

Motion: The AP moves to make an additional alternative (in Action 1) for staff to analyze benefits and costs of an observer program for headboats as an additional type of recreational program.

Motion failed 3-6.

Substitute Motion: The AP recommends that the headboat component be managed by establishing an IFQ program to be implemented by referendum vote deemed necessary by the MSA and the Gulf Council with a 1-federal permit, 1-vote status.

Substitute Motion failed 1-8, with 2 abstentions.

Second Substitute Motion: The AP moves to have Alternative 1 in Action 1 be the Preferred Alternative.

No Action. Continue to manage the reef fish species included in the headboat management program using recreational seasons, size limits, and bag limits.

Second Substitute Motion failed 3-8.

Substitute Motion: The AP moves to make Alternative 2 (in Action 3) the Preferred Alternative.

Substitute Motion failed 2-8.

Substitute Motion: The AP moves to make Alternative 1 in Action 2, *No Action. Do not define reef fish species to include in the management program*, the Preferred Alternative. **Substitute Motion failed for lack of 2nd.**

Substitute Motion: The AP moves that in Amendment 42-endorsments will be transferable or eligible to any vessel that meets the headboat criteria.

Substitute Motion withdrawn.

Substitute Motion: The AP moves that the apportionment of each initial share among eligible participants be based on the average landings per vessel during 2011-2015. The AP recommends that Alternative 3 in Action 7.2 be moved to considered, but rejected. **Substitute Motion withdrawn.**

Substitute Motion: The AP moves that a valid reef fish permit be required to receive shares through a transfer. Shares can only be transferred to those who own a headboat endorsement. **Substitute Motion withdrawn.**

Substitute Motion: To move Action 12, Allocation Caps, to considered but rejected. **Substitute Motion withdrawn.**

Summary for the Ad Hoc Headboat Reef Fish Advisory Panel New Orleans, LA May 19, 2015

Panel Members cont'd

Pam Anderson
Randy Boggs
Charles Paprocki
Clifton Cox
Tom Steber
Jim Green
Chad Haggert
Mark Hubbard
Skipper Thierry
Dustin Trochesset
John Williams

Council and Staff Attendance-Others

Myron Fischer
Assane Diagne
Ava Lasseter
Karen Hoak
Shane Cantrell
Ken Brennan

J.P. Brooker
Tim Hobbs
Elbert Whorton

The meeting was convened at 8:30 a.m. The AP elected Randy Boggs as Chair and Mark Hubbard as Vice-Chair. The Chair read the charge to the AP, which is to make recommendations to the Council relative to the design and implementation of flexible measures for the management of reef fish for the headboat component of the for-hire sector.

Ken Brennan gave a presentation on the geographical distribution of headboats participating in the Southeast survey and their reef fish landings. AP members discussed how to differentiate charter boats and headboats and staff added that for the purpose of a management plan, headboats would be defined as those participation in the Southeast Headboat Survey (HBS).

AP members discussed the species to include in a management plan for the headboat fleet. Staff noted the reef fish species for which sector allocations currently exist and the AP passed the following motion:

• To investigate the possibility of managing all 6 major reef fish species in this management plan (red snapper, gag, red grouper, greater amberjack, gray triggerfish, and black grouper).

AP members discussed whether headboats should be managed as a stand-alone component and the benefits and obstacles of different management approaches. Staff noted that headboats participating in the HBS had recorded landings histories, while charter boats do not. An AP member expressed concern with further dividing the recreational sector, stating the sector will be stronger if they do not separate into subgroups, which diminishes their collective voice. The AP member added that aiming toward a year-round fishery would require catch shares, but providing flexibility for different fishing seasons could be accomplished under regional management. Other AP members preferred to be managed separately, citing the increased access provided to passengers fishing under the headboat collaborative and the flexibility of the allocation-based headboat collaborative which allows operators to decide when to fish and use quota. The AP passed the following motions:

- That headboats be acknowledged as a stand-alone component of the recreational sector. This would include all vessels with federal for-hire reef fish permits that participate in the Southeast Region Headboat Survey (Beaufort survey).
- To recommend to the Council to develop a management approach that provides year round fishing opportunities for headboat businesses and anglers, stability in business plans, safety at sea, improved data collection, reduced discards, and accountability to catch limits.
- To recommend to the Council that the headboat management plan be allocation based on reported landings by the Beaufort headboat survey (HBS).

AP members discussed enforcement and validation tools, such as vessel monitoring systems (VMS) or fish tags. Those opposed to VMS felt it was expensive and unnecessary for hailing out and hailing in, especially for headboats which follow tight, predictable schedules, and that other options were available. Other AP members responded to those concerns, noting the reliability of the VMS units and flexibility to use other options for hailing in. The AP passed the following motion:

- To recommend to Council that enforcement tools for monitoring are:
 - VMS used for hail-out/hail-in on all trips, landings notification on fishing trips
 - Tags used to improve enforcement
 - Electronic logbooks submitted to the Beaufort survey on the same day as each fishing trip.

AP members discussed the transferability of allocation under an allocation-based management system. Concern was expressed that transferability could result in increased costs for passengers

to retain fish, and that allocated fish should not be purchasable by other vessels, but be returned and be redistributed fairly. Those in support of transferability argued it allowed for flexibility in the management plan. The AP also discussed management costs of a new headboat management plan. The AP passed the following motions:

- The advisory panel supports transferability of headboat allocations among participants in the headboat component, consistent with MSA guidelines on transferability, but without inter-sector trading.
- To recommend to the Council to consider how management costs can be shared between the NMFS and the headboat component of the fishery.

Staff noted that both the Ad Hoc Charter AP and this Ad Hoc Headboat AP passed motions recommending separate management of charter boats and headboats. To accomplish separate management, the for-hire component's quota would need to be divided between charter boats and headboats. Headboats that participate in the HBS have landings histories which could be used as the basis for allocating between the for-hire components and an AP member stated that headboats have accounted for 32 to 36% of red snapper landings. The AP passed the following motions:

- To recommend to the Council that the headboat component become a subsector of the for-hire sector/component, and that allocation based fisheries be deemed from our historical Beaufort headboat survey data, using the formula from Amendment 40.
- To recommend to the Council that this panel reconvenes as soon as possible to continue advising on the headboat component for the reef fish fishery.

Continuing to manage headboats with bag limits, size limits, and seasons was discussed, but those opposed stated that traditional management approaches have not worked. Additional discussion concerned identifying data needs and improving accountability for the fleet, with the goal of reducing uncertainty and removing the 20% buffer to the recreational quota. AP members asked headboat collaborative participants about the program, including customer perceptions, use of tags, and bag limits. An AP member noted that one of the challenges of the program was that more people could not participate. The AP passed the following motion:

• To recommend to the Council that the key components of the headboat EFP be considered for allocation-based management of headboats.

Following review of their recommendations, the AP meeting was adjourned at 3:30 pm.

All meeting motions including substitute and failed motions:

Motion: That red snapper and gag grouper be the primary species that this management plan encompasses.

Substitute motion: To investigate the possibility of managing all 6 major reef fish species in this management plan (red snapper, gag, red grouper, greater amberjack, gray triggerfish, and black grouper)

Substitute Motion carried 8 to 3

Motion: That headboats be acknowledged as a stand-alone component of the recreational sector. This would include all vessels with federal for-hire reef fish permits that participate in the Southeast Region Headboat Survey (Beaufort survey).

Motion carried 11 to 1

Motion: To recommend to the Council to develop a management approach that provides year round fishing opportunities for headboat businesses and anglers, stability in business plans, safety at sea, improved data collection, reduced discards, and accountability to catch limits.

Motion carried 11 to 1

Motion: To recommend to the Council that the headboat management plan be allocation based on reported landings by the Beaufort headboat survey (HBS).

Motion carried 10 to 2

Motion: To recommend to Council that enforcement tools for monitoring are:

- VMS used for hail-out/hail-in on all trips, landings notification on fishing trips
- Tags used to improve enforcement
- Electronic logbooks submitted to the Beaufort survey on the same day as each fishing trip **Motion carried 8 to 4**

Substitute motion: To recommend to the Council that enforcement tools, an app, or a traditional logbooks be used, with a call-in/call-out component that do not require VMS. Motion failed 4 to 7

Second substitute motion: To use an allocation based management system, that a VMS system will be required. With a traditional management system (size limits, bag limits, seasons, etc.) that VMS not be required.

Motion failed for lack of a second

Motion: The advisory panel supports transferability of headboat allocations among participants in the headboat component, consistent with MSA guidelines on transferability, but without intersector trading.

Motion carried 11 to 1

Substitute motion: That if the Council chooses to move towards an allocation based management system, that there will not be a monetary value assigned to the allocation for transferability.

Motion failed 10 to 2

Motion: To recommend to the Council to consider how management costs can be shared between the NMFS and the headboat component of the fishery.

Motion carried 9 to 2

Motion: To recommend to the Council that the headboat component become a subsector of the for-hire sector/component, and that allocation based fisheries be deemed from our historical Beaufort headboat survey data, using the formula from Amendment 40.

Motion carried 11 to 1

Motion: To recommend to the Council that this panel reconvenes as soon as possible to continue advising on the headboat component for the reef fish fishery.

Motion carried with no opposition

Motion: To recommend to the Council to manage the headboat fleet with seasons, bag limits, and size limits along with additional appropriate accountability measures, allowing scientists to determine what data they need, and applying that request of data to the current headboat survey. Motion failed 2 to 9

Motion: To recommend to Council that a management plan for the headboat sector be designed closely mirroring the headboat EFP.

Motion carried 10 to 2

Motion: to reconsider prior motion

Motion carried 7 to 3

Substitute Motion: To recommend to the Council that the key components of the headboat EFP be considered for allocation-based management of headboats.

Revised Substitute Motion carried 8 to 3

APPENDIX C: CONSIDERED BUT REJECTED ALTERNATIVES

Action 13-1. Distribution of Quota Increases

Alternative 1. No Action. If the quota for a species increases after January 1, distribute the increased allocation <u>proportionally</u> to *all participants holding shares for that species*. The distribution will occur on the effective date of the increase or as soon as possible thereafter.

Alternative 2. If the quota for a species increases after January 1, distribute the increased allocation <u>equally</u> to *all participants holding shares for that species*. The distribution will occur on the effective date of the increase or as soon as possible thereafter.

Alternative 3. If the quota for a species increases after January 1, distribute the increased allocation <u>equally</u> to <u>participants who do not hold shares for that species</u> but hold an endorsement to the reef fish for-hire permit or a reef fish LHV permit (whichever is established in Action 4). The distribution will occur on the effective date of the increase or as soon as possible thereafter.

Alternative 4. If the quota for a species increases after January 1, distribute the increased allocation <u>equally</u> to *all participants* that hold an endorsement to the reef fish for-hire permit or a reef fish LHV permit (whichever is established in Action 4). The distribution will occur on the effective date of the increase or as soon as possible thereafter.

Note: Under any of these alternatives, each participant's shares will not change. At the beginning of the next year and each year thereafter, the entire quota (including any in-season increase) will be distributed proportionally based on the current shareholdings.

APPENDIX D: AP PREFERRED ALTERNATIVES

Action 1. Type of Recreational Management Program for Landings History Vessels

Alternative 2. For landings history vessels, manage the reef fish species chosen in Action 2 by establishing an Individual Fishing Quota Program (IFQ).

Action 2. Species to Include in the LHV Management Program

Preferred Alternative 2: Include the following species in the management program:

Preferred Option 2a: Red snapper

Preferred Option 2b: Greater amberjack **Preferred Option 2c**: Gray triggerfish

Preferred Option 2d: Gag

Preferred Option 2e: Red grouper

Action 3. Participation at the Onset of the LHV Program

Alternative 1. No Action. Any vessel that meets the control date, has a valid or renewable federal reef fish for-hire permit, and is still participating in the SRHS, must participate in the program selected in Action 1. (**AP Preferred**)

Action 4. Landings History Vessel Endorsement or Permit

Preferred Alternative 2. Establish an endorsement for LHV. LHV program participants are required to have an LHV endorsement to their Gulf reef fish for-hire permit. Endorsements will be issued to qualifying LHV program participants at the time of implementation of this action. With a PFQ, the shares would be attached to the endorsement. An LHV endorsement holder may only fish off the LHV quota for the species selected in Action 2 throughout the year. LHV endorsements are transferrable to any vessel with a Gulf reef fish for-hire permit. (**AP Preferred**)

Action 5. Allocation of Annual Catch Limit to the Landings History Vessel Program

Alternative 5: For each species, allocate a portion of the recreational ACL to the LHV Program based on 50% average from 1986-2013 (2010 excluded) and 50% average landings from 2006-2013 (2010 excluded). (Preferred Alternative from Amendment 40). (**AP Preferred**)

Red Snapper (% of for-hire*)	31.3%
(% of total)	16.5%
Greater Amberjack	7.5%
Gray Triggerfish	11.8%
Gag	4.6%
Red Grouper	3.6%

^{*}Until 2022

Action 6. Units of Measure for Quota Distribution and Reporting

Alternative 3. The LHV quotas are distributed in pounds and reported in numbers of fish. (**AP Preferred**)

Action 7. Initial Apportionment of Shares

Action 7-1. Time Period of Landings to Determine Initial Apportionment of Shares

Preferred Alternative 4. Apportion initial shares among eligible participants based on the year with the highest landings by vessel for each species during the most recent five years (2011-2015). (**AP Preferred**)

Action 7-2. Distribution of Initial Shares

Preferred Alternative 2. Distribute a percentage of initial shares for each species proportionally based on average landings per permit during the time interval selected in Action 7-1 and distribute the remaining percentage of the initial shares equally among LHV permit holders participating in the program. Percentages distributed proportionally and equally are as follows (**AP Preferred; with Option a**):

Option	Distribution of Initial Shares		
	Proportional	Equal	
Preferred 2a	100	0	
2b	75	25	
2c	50	50	
2d	25	75	

Action 8. Transferability of Shares (IFQ only)

Preferred Alternative 2. Require a valid reef fish for-hire permit with LHV endorsement or a reef fish LHV permit (whichever is established in Action 4) to receive shares through transfer. Shares can only be transferred to US citizens or permanent resident aliens. (**AP Preferred**)

Action 9. Maintenance of Shares

Preferred Alternative 2. Require a reef fish charter/headboat permit with LHV endorsement or a reef fish LHV (whichever is established in Action 4) to hold shares. Shares can only be held by US citizens or permanent resident aliens. For an IFQ program, if a participant transfers their permit/endorsement or the permit/endorsement expires, the owner must divest of their shares. For a PFQ program, if a permit/endorsement is transferred, the shares automatically transfer with it; if a permit/endorsement terminates, NMFS will redistribute the shares proportionally to the current participants. (**AP Preferred**)

Action 10. Transferability of Annual Allocation

Alternative 2. Require a valid reef fish charter/headboat permit with LHV endorsement or a valid reef fish headboat permit (whichever is established in Action 4) to receive annual allocation through transfer. Annual allocation can only be transferred to US citizens or permanent resident aliens. (**AP Preferred**)

Action 11. Share Caps

Preferred Alternative 2. In each share category, no person shall hold more shares than the maximum percentage issued to the recipient of the largest shares at the time of the initial apportionment of shares. (**AP Preferred**)

Action 12. Allocation Caps

Alternative 2. At any point in time, a person's total holdings (from all accounts) cannot be more than the maximum holdings attributed to a person (as determined in Action 11) in **each species category**. (**AP Preferred**)

Action 13. Retaining Annual Allocation before a Quota Reduction

Alternative 2. If the quota for a species is anticipated to decrease after January 1, the Regional Administrator has the authority to retain the anticipated amount of decrease during distribution of allocation for that species at the beginning of the year. If the decrease does not occur by a set date, the amount retained will be distributed as soon as possible. (**AP Preferred**)

Option 2a: June 1 Option 2b: August 1

Action 14. Cost Recovery Fees

Alternative 2. For each participant, cost recovery fees will be based on the total value obtained by multiplying a **standard price** per pound (or per fish) of a given species by the number of pounds (or of fish) of that species harvested by the participant during the specified time period. The cost recovery fee will be up to 3% of the total value. The **standard price** will be equal to **(AP Preferred):**

Option a: the average commercial ex-vessel price from the previous year (**AP Preferred**)

Action 15. New Entrants

Preferred Alternative 4. At the beginning of each calendar year, vessels with valid federal Gulf for-hire reef fish permits that are not participating in the LHV program are eligible to apply for an endorsement to the reef fish for-hire permit or for a reef fish headboat permit (whichever is established in Action 4) if the vessels are selected to participate in the Southeast Region Headboat Survey. *This would be limited to vessels that carry over 49 passengers*. Receiving an endorsement or a reef fish LHV permit (whichever is established in Action 4) does not grant shares or annual allocation to the recipient. (**AP Preferred**)

APPENDIX E. CURRENT FEDERAL REGULATIONS FOR GULF OF MEXICO RECREATIONAL RED SNAPPER MANAGEMENT

1. § 622.9 Prohibited gear and methods--general.

(e) Use of Gulf reef fish as bait prohibited. Gulf reef fish may not be used as bait in any fishery, except that, when purchased from a fish processor, the filleted carcasses and offal of Gulf reef fish may be used as bait in trap fisheries for blue crab, stone crab, deep-water crab, and spiny lobster.

2. § 622.20 Permits and endorsements

- (b) Charter vessel/headboat permits. For a person aboard a vessel that is operating as a charter vessel or headboat to fish for or possess Gulf reef fish, in or from the EEZ, a valid charter vessel/headboat permit for Gulf reef fish must have been issued to the vessel and must be on board.
- (1) Limited access system for charter vessel/headboat permits for Gulf reef fish. No applications for additional charter vessel/headboat permits for Gulf reef fish will be accepted. Existing permits may be renewed, are subject to the restrictions on transfer in paragraph (b)(1)(i) of this section, and are subject to the renewal requirements in paragraph (b)(1)(ii) of this section.
- (i) Transfer of permits--(A) Permits without a historical captain endorsement. A charter vessel/headboat permit for Gulf coastal migratory pelagic fish or Gulf reef fish that does not have a historical captain endorsement is fully transferable, with or without sale of the permitted vessel, except that no transfer is allowed to a vessel with a greater authorized passenger capacity than that of the vessel to which the moratorium permit was originally issued, as specified on the face of the permit being transferred. An application to transfer a permit to an inspected vessel must include a copy of that vessel's current USCG Certificate of Inspection (COI). A vessel without a valid COI will be considered an uninspected vessel with an authorized passenger capacity restricted to six or fewer passengers.
- (B) Permits with a historical captain endorsement. A charter vessel/headboat permit for Gulf coastal migratory pelagic fish or Gulf reef fish that has a historical captain endorsement may only be transferred to a vessel operated by the historical captain, cannot be transferred to a vessel with a greater authorized passenger capacity than that of the vessel to which the moratorium permit was originally issued, as specified on the face of the permit being transferred, and is not otherwise transferable.
- (C) Procedure for permit transfer. To request that the RA transfer a charter vessel/headboat permit for Gulf reef fish, the owner of the vessel who is transferring the permit and the owner of the vessel that is to receive the transferred permit must complete the transfer information on the reverse side of the permit and return the permit and a completed application for transfer to the RA. See § 622.4(f) for additional transfer-related requirements applicable to all permits issued under this part.
- (ii) Renewal. (A) Renewal of a charter vessel/headboat permit for Gulf reef fish is contingent upon the permitted vessel and/or captain, as appropriate, being included in an active

survey frame for, and, if selected to report, providing the information required in one of the approved fishing data surveys. Surveys include, but are not limited to—

- (1) NMFS' Marine Recreational Fishing Vessel Directory Telephone Survey (conducted by the Gulf States Marine Fisheries Commission);
 - (2) NMFS' Southeast Headboat Survey (as required by § 622.26(b)(1));
 - (3) Texas Parks and Wildlife Marine Recreational Fishing Survey; or
- (4) A data collection system that replaces one or more of the surveys in paragraph (b)(1)(ii)(A),(1),(2), or (3) of this section.
- (B) A charter vessel/headboat permit for Gulf reef fish that is not renewed or that is revoked will not be reissued. A permit is considered to be not renewed when an application for renewal, as required, is not received by the RA within 1 year of the expiration date of the permit.
- (iii) Requirement to display a vessel decal. Upon renewal or transfer of a charter vessel/headboat permit for Gulf reef fish, the RA will issue the owner of the permitted vessel a vessel decal for Gulf reef fish. The vessel decal must be displayed on the port side of the deckhouse or hull and must be maintained so that it is clearly visible.
- (2) A charter vessel or headboat may have both a charter vessel/headboat permit and a commercial vessel permit. However, when a vessel is operating as a charter vessel or headboat, a person aboard must adhere to the bag limits. See the definitions of "Charter vessel" and "Headboat" in § 622.2 for an explanation of when vessels are considered to be operating as a charter vessel or headboat, respectively.
- (3) If Federal regulations for Gulf reef fish in subparts A or B of this part are more restrictive than state regulations, a person aboard a charter vessel or headboat for which a charter vessel/headboat permit for Gulf reef fish has been issued must comply with such Federal regulations regardless of where the fish are harvested.

3. § 622.26 Recordkeeping and reporting.

- (b) Charter vessel/headboat owners and operators—(1) Reporting requirement. The owner or operator of a vessel for which a charter vessel/headboat permit for Gulf reef fish has been issued, as required under § 622.20(b), or whose vessel fishes for or lands such reef fish in or from state waters adjoining the Gulf EEZ, who is selected to report by the SRD must maintain a fishing record for each trip, or a portion of such trips as specified by the SRD, on forms provided by the SRD and must submit such record as specified in paragraph (b)(2) of this section.
- (2) Reporting deadlines--(i) Charter vessels. Completed fishing records required by paragraph (b)(1) of this section for charter vessels must be submitted to the SRD weekly, postmarked not later than 7 days after the end of each week (Sunday). Information to be reported is indicated on the form and its accompanying instructions.
- (ii) Headboats. Completed fishing records required by paragraph (b)(1) of this section for headboats must be submitted to the SRD monthly and must either be made available to an authorized statistical reporting agent or be postmarked not later than 7 days after the end of each month. Information to be reported is indicated on the form and its accompanying instructions.

4. § 622.27 At-sea observer coverage.

- (a) Required coverage. A vessel for which a Federal commercial vessel permit for Gulf reef fish or a charter vessel/headboat permit for Gulf reef fish has been issued must carry a NMFS-approved observer, if the vessel's trip is selected by the SRD for observer coverage. Vessel permit renewal is contingent upon compliance with this paragraph (a).
- (b) Notification to the SRD. When observer coverage is required, an owner or operator must advise the SRD in writing not less than 5 days in advance of each trip of the following:
 - (1) Departure information (port, dock, date, and time).
 - (2) Expected landing information (port, dock, and date).
- (c) Observer accommodations and access. An owner or operator of a vessel on which a NMFS-approved observer is embarked must:
 - (1) Provide accommodations and food that are equivalent to those provided to the crew.
- (2) Allow the observer access to and use of the vessel's communications equipment and personnel upon request for the transmission and receipt of messages related to the observer's duties.
- (3) Allow the observer access to and use of the vessel's navigation equipment and personnel upon request to determine the vessel's position.
- (4) Allow the observer free and unobstructed access to the vessel's bridge, working decks, holding bins, weight scales, holds, and any other space used to hold, process, weigh, or store fish.
- (5) Allow the observer to inspect and copy the vessel's log, communications logs, and any records associated with the catch and distribution of fish for that trip.

5. § 622.29 Conservation measures for protected resources.

- (a) Gulf reef fish commercial vessels and charter vessels/headboats--(1) Sea turtle conservation measures. (i) The owner or operator of a vessel for which a commercial vessel permit for Gulf reef fish or a charter vessel/headboat permit for Gulf reef fish has been issued, as required under
- §§ 622.20(a)(1) and 622.20(b), respectively, must post inside the wheelhouse, or within a waterproof case if no wheelhouse, a copy of the document provided by NMFS titled, "Careful Release Protocols for Sea Turtle Release With Minimal Injury," and must post inside the wheelhouse, or in an easily viewable area if no wheelhouse, the sea turtle handling and release guidelines provided by NMFS.
- (ii) Such owner or operator must also comply with the sea turtle bycatch mitigation measures, including gear requirements and sea turtle handling requirements, specified in §§ 635.21(c)(5)(i) and (ii) of this chapter, respectively.
- (iii) Those permitted vessels with a freeboard height of 4 ft (1.2 m) or less must have on board a dipnet, tire, short-handled dehooker, long-nose or needle-nose pliers, bolt cutters, monofilament line cutters, and at least two types of mouth openers/mouth gags. This equipment must meet the specifications described in §§ 635.21(c)(5)(i)(E) through (L) of this chapter with the following modifications: the dipnet handle can be of variable length, only one NMFS-approved short-handled dehooker is required (i.e., § 635.21(c)(5)(i)(G) or (H) of this chapter); and life rings, seat cushions, life jackets, and life vests or any other comparable, cushioned, elevated surface that allows boated sea turtles to be immobilized, may be used as alternatives to

tires for cushioned surfaces as specified in § 635.21(c)(5)(i)(F) of this chapter. Those permitted vessels with a freeboard height of greater than 4 ft (1.2 m) must have on board a dipnet, tire, long-handled line clipper, a short-handled and a long-handled dehooker, a long-handled device to pull an inverted "V", long-nose or needle-nose pliers, bolt cutters, monofilament line cutters, and at least two types of mouth openers/mouth gags. This equipment must meet the specifications described in § 635.21(c)(5)(i)(A) through (L) of this chapter with the following modifications: only one NMFS-approved long-handled dehooker (§ 635.21(c)(5)(i)(B) or (C)) of this chapter and one NMFS-approved short-handled dehooker (§ 635.21(c)(5)(i)(G) or (H) of this chapter) are required; and life rings, seat cushions, life jackets, and life vests, or any other comparable, cushioned, elevated surface that allows boated sea turtles to be immobilized, may be used as alternatives for cushioned surfaces as specified in § 635.21(c)(5)(i)(F) of this chapter.

- (2) Smalltooth sawfish conservation measures. The owner or operator of a vessel for which a commercial vessel permit for Gulf reef fish or a charter vessel/headboat permit for Gulf reef fish has been issued, as required under §§ 622.20(a)(1) and 622.20(b), respectively, that incidentally catches a smalltooth sawfish must--
 - (i) Keep the sawfish in the water at all times;
 - (ii) If it can be done safely, untangle the line if it is wrapped around the saw;
 - (iii) Cut the line as close to the hook as possible; and
- (iv) Not handle the animal or attempt to remove any hooks on the saw, except for with a long-handled dehooker.
 - (b) [Reserved]

6. § 622.30 Required fishing gear.

For a person on board a vessel to fish for Gulf reef fish in the Gulf EEZ, the vessel must possess on board and such person must use the gear as specified in paragraphs (a) through (c) of this section.

- (a) Non-stainless steel circle hooks. Non-stainless steel circle hooks are required when fishing with natural baits.
- (b) Dehooking device. At least one dehooking device is required and must be used to remove hooks embedded in Gulf reef fish with minimum damage. The hook removal device must be constructed to allow the hook to be secured and the barb shielded without re-engaging during the removal process. The dehooking end must be blunt, and all edges rounded. The device must be of a size appropriate to secure the range of hook sizes and styles used in the Gulf reef fish fishery.
- (c) Venting tool. At least one venting tool is required and must be used to deflate the abdominal cavities of Gulf reef fish to release the fish with minimum damage. This tool must be a sharpened, hollow instrument, such as a hypodermic syringe with the plunger removed, or a 16-gauge needle fixed to a hollow wooden dowel. A tool such as a knife or an ice-pick may not be used. The venting tool must be inserted into the fish at a 45-degree angle approximately 1 to 2 inches (2.54 to 5.08 cm) from the base of the pectoral fin. The tool must be inserted just deep enough to release the gases, so that the fish may be released with minimum damage.

7. § 622.32 Prohibited gear and methods.

Also see § 622.9 for additional prohibited gear and methods that apply more broadly to multiple fisheries or in some cases all fisheries.

- (a) Poisons. A poison may not be used to take Gulf reef fish in the Gulf EEZ.
- (b) [Reserved]

8. § 622.33 Prohibited species.

(d) Gulf reef fish exhibiting trap rash. Possession of Gulf reef fish in or from the Gulf EEZ that exhibit trap rash is prima facie evidence of illegal trap use and is prohibited. For the purpose of this paragraph, trap rash is defined as physical damage to fish that characteristically results from contact with wire fish traps. Such damage includes, but is not limited to, broken fin spines, fin rays, or teeth; visually obvious loss of scales; and cuts or abrasions on the body of the fish, particularly on the head, snout, or mouth.

9. § 622.34 Seasonal and area closures designed to protect Gulf reef fish.

(a) Closure provisions applicable to the Madison and Swanson sites and Steamboat Lumps, and the Edges-- (1) Descriptions of Areas. (i) The Madison and Swanson sites are bounded by rhumb lines connecting, in order, the following points:

Point	North lat.	West long.
A	29°17'	85°50'
В	29°17'	85°38'
С	29°06'	85°38'
D	29°06'	85°50'
A	29°17'	85°50'

(ii) Steamboat Lumps is bounded by rhumb lines connecting, in order, the following points:

Point	North lat.	West long.
A	28°14'	84°48'
В	28°14'	84°37'
С	28°03'	84°37'
D	28°03'	84°48'
A	28°14'	84°48'

(iii) The Edges is bounded by rhumb lines connecting, in order, the following points:

Point	North lat.	West long.
A	28°51'	85°16'
В	28°51'	85°04'
С	28°14'	84°42'
D	28°14'	84°54'
A	28°51'	85°16'

- (2) Within the Madison and Swanson sites and Steamboat Lumps, possession of Gulf reef fish is prohibited, except for such possession aboard a vessel in transit with fishing gear stowed as specified in paragraph (a)(4) of this section.
- (3) Within the Madison and Swanson sites and Steamboat Lumps during November through April, and within the Edges during January through April, all fishing is prohibited, and possession of any fish species is prohibited, except for such possession aboard a vessel in transit with fishing gear stowed as specified in paragraph (a)(4) of this section. The provisions of this paragraph, (a)(3), do not apply to highly migratory species.
- (4) For the purpose of paragraph (a) of this section, transit means non-stop progression through the area; fishing gear appropriately stowed means--
- (i) A longline may be left on the drum if all gangions and hooks are disconnected and stowed below deck. Hooks cannot be baited. All buoys must be disconnected from the gear; however, buoys may remain on deck.
- (ii) A trawl net may remain on deck, but trawl doors must be disconnected from the trawl gear and must be secured.
- (iii) A gillnet must be left on the drum. Any additional gillnets not attached to the drum must be stowed below deck.
- (iv) A rod and reel must be removed from the rod holder and stowed securely on or below deck. Terminal gear (i.e., hook, leader, sinker, flasher, or bait) must be disconnected and stowed separately from the rod and reel. Sinkers must be disconnected from the down rigger and stowed separately.
- (5) Within the Madison and Swanson sites and Steamboat Lumps, during May through October, surface trolling is the only allowable fishing activity. For the purpose of this paragraph (a)(5), surface trolling is defined as fishing with lines trailing behind a vessel which is in constant motion at speeds in excess of four knots with a visible wake. Such trolling may not involve the use of down riggers, wire lines, planers, or similar devices.
- (6) For the purpose of this paragraph (a), fish means finfish, mollusks, crustaceans, and all other forms of marine animal and plant life other than marine mammals and birds. Highly migratory species means tuna species, marlin (*Tetrapturus spp.* and *Makaira spp.*), oceanic sharks, sailfishes (*Istiophorus spp.*), and swordfish (*Xiphias gladius*).

10. § 622.35 Gear restricted areas.

- (a) Reef fish stressed area. The stressed area is that part of the Gulf EEZ shoreward of rhumb lines connecting, in order, the points listed in Table 2 in Appendix B of this part.
- (1) A powerhead may not be used in the stressed area to take Gulf reef fish. Possession of a powerhead and a mutilated Gulf reef fish in the stressed area or after having fished in the stressed area constitutes prima facie evidence that such reef fish was taken with a powerhead in the stressed area. The provisions of this paragraph do not apply to hogfish.
- (2) A roller trawl may not be used in the stressed area. Roller trawl means a trawl net equipped with a series of large, solid rollers separated by several smaller spacer rollers on a separate cable or line (sweep) connected to the footrope, which makes it possible to fish the gear over rough bottom, that is, in areas unsuitable for fishing conventional shrimp trawls. Rigid framed trawls adapted for shrimping over uneven bottom, in wide use along the west coast of Florida, and shrimp trawls with hollow plastic rollers for fishing on soft bottoms, are not considered roller trawls.

(b) Seasonal prohibitions applicable to bottom longline fishing for Gulf reef fish. (1) From June through August each year, bottom longlining for Gulf reef fish is prohibited in the portion of the Gulf EEZ east of 85°30' W. long. that is shoreward of rhumb lines connecting, in order, the following points:

Point	North lat.	West long.
A	28°58.70'	85°30.00'
В	28°59.25'	85°26.70'
С	28°57.00'	85°13.80'
D	28°47.40'	85°3.90'
Е	28°19.50'	84°43.00'
F	28°0.80'	84°20.00'
G	26°48.80'	83°40.00'
Н	25°17.00'	83°19.00'
Ι	24°54.00'	83°21.00'
J	24°29.50'	83°12.30'
K	24°26.50'	83°00.00'

(2) Within the prohibited area and time period specified in paragraph (b)(1) of this section, a vessel with bottom longline gear on board may not possess Gulf reef fish unless the bottom longline gear is appropriately stowed, and a vessel that is using bottom longline gear to fish for species other than Gulf reef fish may not possess Gulf reef fish. For the purposes of paragraph (b) of this section, appropriately stowed means that a longline may be left on the drum

if all gangions and hooks are disconnected and stowed below deck; hooks cannot be baited; and all buoys must be disconnected from the gear but may remain on deck.

- (3) Within the Gulf EEZ east of 85°30' W. long., a vessel for which a valid eastern Gulf reef fish bottom longline endorsement has been issued that is fishing bottom longline gear or has bottom longline gear on board cannot possess more than a total of 1000 hooks including hooks on board the vessel and hooks being fished and cannot possess more than 750 hooks rigged for fishing at any given time. For the purpose of this paragraph, "hooks rigged for fishing" means hooks attached to a line or other device capable of attaching to the mainline of the longline.
- (c) Reef fish longline and buoy gear restricted area. A person aboard a vessel that uses, on any trip, longline or buoy gear in the longline and buoy gear restricted area is limited on that trip to the bag limits for Gulf reef fish specified in § 622.38(b) and, for Gulf reef fish for which no bag limit is specified in § 622.38(b), the vessel is limited to 5%, by weight, of all fish on board or landed. The longline and buoy gear restricted area is that part of the Gulf EEZ shoreward of rhumb lines connecting, in order, the points listed in Table 1 in Appendix B of this part.
- (d) Alabama SMZ. The Alabama SMZ consists of artificial reefs and surrounding areas. In the Alabama SMZ, fishing by a vessel that is operating as a charter vessel or headboat, a vessel that does not have a commercial permit for Gulf reef fish, as required under § 622.20(a)(1), or a vessel with such a permit fishing for Gulf reef fish is limited to hook-and-line gear with three or fewer hooks per line and spearfishing gear. A person aboard a vessel that uses on any trip gear other than hook-and-line gear with three or fewer hooks per line and spearfishing gear in the Alabama SMZ is limited on that trip to the bag limits for Gulf reef fish specified in § 622.38(b) and, for Gulf reef fish for which no bag limit is specified in § 622.38(b), the vessel is limited to 5%, by weight, of all fish on board or landed. The Alabama SMZ is bounded by rhumb lines connecting, in order, the following points:

Point	North lat.	West long.
A	30°02.5'	88°07.7'
В	30°02.6'	87°59.3'
С	29°55.0'	87°55.5'
D	29°54.5'	88°07.5'
A	30°02.5'	88°07.7'

11. § 622.37 Size limits.

All size limits in this section are minimum size limits unless specified otherwise. A fish not in compliance with its size limit, as specified in this section, in or from the Gulf EEZ, may not be possessed, sold, or purchased. A fish not in compliance with its size limit must be released immediately with a minimum of harm. The operator of a vessel that fishes in the EEZ is responsible for ensuring that fish on board are in compliance with the size limits specified in this section. See § 622.10 regarding requirements for landing fish intact.

(a) Snapper—(1) Red snapper—16 inches (40.6 cm), TL, for a fish taken by a person subject to the bag limit specified in § 622.38 (b)(3) and 13 inches (33.0 cm), TL, for a fish taken by a person not subject to the bag limit.

12. § 622.38 Bag and possession limits.

- (a) Additional applicability provisions for Gulf reef fish. (1) Section 622.11(a) provides the general applicability for bag and possession limits. However, § 622.11(a) notwithstanding, bag and possession limits also apply for Gulf reef fish in or from the EEZ to a person aboard a vessel that has on board a commercial permit for Gulf reef fish--
- (i) When trawl gear or entangling net gear is on board. A vessel is considered to have trawl gear on board when trawl doors and a net are on board. Removal from the vessel of all trawl doors or all nets constitutes removal of trawl gear.
- (ii) When a longline or buoy gear is on board and the vessel is fishing or has fished on a trip in the reef fish longline and buoy gear restricted area specified in § 622.35(c). A vessel is considered to have a longline on board when a power-operated longline hauler, a cable of diameter and length suitable for use in the longline fishery, and gangions are on board. Removal of any one of these three elements, in its entirety, constitutes removal of a longline.
- (iii) For a species/species group when its quota has been reached and closure has been effected, provided that no commercial quantities of Gulf reef fish, i.e., Gulf reef fish in excess of applicable bag/possession limits, are on board as specified in paragraph (a)(2) of this section.
- (iv) When the vessel has on board or is tending any trap other than a stone crab trap or a spiny lobster trap.
- (2) A person aboard a vessel that has a Federal commercial vessel permit for Gulf reef fish and commercial quantities of Gulf reef fish, i.e., Gulf reef fish in excess of applicable bag/possession limits, may not possess Gulf reef fish caught under a bag limit.
 - (b) Bag limits--
- (3) Red snapper--2. However, no red snapper may be retained by the captain or crew of a vessel operating as a charter vessel or headboat. The bag limit for such captain and crew is zero.

13. § 622.39 Quotas.

See § 622.8 for general provisions regarding quota applicability and closure and reopening procedures. This section, provides quotas and specific quota closure restrictions for Gulf reef fish.

- (a) Gulf reef fish
- (2) *Recreational quotas*. The following quotas apply to persons who fish for Gulf reef fish other than under commercial vessel permits for Gulf reef fish and the applicable commercial quotas specified in paragraph (a)(1) of this section.
- (i) Recreational quota for red snapper—(A) Total recreational quota (Federal charter vessel/headboat and private angling component quotas combined)—

- (1) For fishing year 2015—7.007 million lb (3.178 million kg), round weight.
- (2) For fishing year 2016—7.192 million lb (3.262 million kg), round weight.
- (3) For fishing year 2017 and subsequent fishing years—7.076 million lb (3.210 million kg), round weight.
- (B) Federal charter vessel/headboat component quota. The Federal charter vessel/headboat component quota applies to vessels that have been issued a valid Federal charter vessel/headboat permit for Gulf reef fish any time during the fishing year. This component quota is effective for only the 2015, 2016, and 2017 fishing years. For the 2018 and subsequent fishing years, the applicable total recreational quota specified in §622.39(a)(2)(i)(A) will apply to the recreational sector.
 - (1) For fishing year 2015—2.964 million lb (1.344 million kg), round weight.
 - (2) For fishing year 2016—3.042 million lb (1.380 million kg), round weight.
 - (3) For fishing year 2017—2.993 million lb (1.358 million kg), round weight.
- (C) *Private angling component quota*. The private angling component quota applies to vessels that fish under the bag limit and have not been issued a Federal charter vessel/headboat permit for Gulf reef fish any time during the fishing year. This component quota is effective for only the 2015, 2016, and 2017 fishing years. For the 2018 and subsequent fishing years, the applicable total recreational quota specified in §622.39(a)(2)(i)(A) will apply to the recreational sector.
 - (1) For fishing year 2015—4.043 million lb (1.834 million kg), round weight.
 - (2) For fishing year 2016—4.150 million lb (1.882 million kg), round weight.
 - (3) For fishing year 2017—4.083 million lb (1.852 million kg), round weight.
- 14. §622.41 Annual catch limits (ACLs), annual catch targets (ACTs), and accountability measures (AMs).
- (q) Red Snapper
- (2) Recreational sector. (i) The recreational ACL is equal to the total recreational quota specified in §622.39(a)(2)(i)(A). The AA will determine the length of the red snapper recreational fishing season, or recreational fishing seasons for the Federal charter vessel/headboat and private angling components, based on when recreational landings are projected to reach the recreational ACT, or respective recreational component ACT specified in paragraph (q)(2)(iii) of this section, and announce the closure date(s) in the FEDERAL REGISTER. These seasons will serve as in-

season accountability measures. On and after the effective date of the recreational closure or recreational component closure notifications, the bag and possession limit for red snapper or for the respective component is zero. When the recreational sector or Federal charter vessel/headboat component is closed, this bag and possession limit applies in the Gulf on board a vessel for which a valid Federal charter vessel/headboat permit for Gulf reef fish has been issued, without regard to where such species were harvested, i.e., in state or Federal waters. (ii) In addition to the measures specified in paragraph (q)(2)(i) of this section, if red snapper recreational landings, as estimated by the SRD, exceed the total recreational quota specified in §622.39(a)(2)(i)(A), and red snapper are overfished, based on the most recent Status of U.S. Fisheries Report to Congress, the AA will file a notification with the Office of the Federal Register to reduce the total recreational quota by the amount of the quota overage in the prior fishing year, and reduce the applicable recreational component quota(s) specified in §622.39(a)(2)(i)(B) and (C) and the applicable recreational component ACT(s) specified in paragraph (q)(2)(iii) of this section (based on the buffer between the total recreational ACT and the total recreational quota specified in the FMP), unless NMFS determines based upon the best scientific information available that a greater, lesser, or no overage adjustment is necessary. (iii) Recreational ACT for red snapper—(A) Total recreational ACT (Federal charter vessel/headboat and private angling component ACTs combined)—

- (1) For fishing year 2015—5.606 million lb (2.543 million kg), round weight.
- (2) For fishing year 2016—5.754 million lb (2.610 million kg), round weight.
- (3) For fishing year 2017 and subsequent fishing years—5.661 million lb (2.568 million kg), round weight.
- (B) Federal charter vessel/headboat component ACT. The Federal charter vessel/headboat component ACT applies to vessels that have been issued a valid Federal charter vessel/headboat permit for Gulf reef fish any time during the fishing year. This component ACT is effective for only the 2015, 2016, and 2017 fishing years. For the 2018 and subsequent fishing years, the applicable total recreational quota specified in §622.39(a)(2)(i)(A) will apply to the recreational sector.
 - (1) For fishing year 2015—2.371 million lb (1.075 million kg), round weight.
 - (2) For fishing year 2016—2.434 million lb (1.104 million kg), round weight.
 - (3) For fishing year 2017—2.395 million lb (1.086 million kg), round weight.
- (C) *Private angling component ACT*. The private angling component ACT applies to vessels that fish under the bag limit and have not been issued a Federal charter vessel/headboat permit for Gulf reef fish any time during the fishing year. This component ACT is effective for only the 2015, 2016, and 2017 fishing years. For the 2018 and subsequent fishing years, the applicable total recreational quota specified in §622.39(a)(2)(i)(A) will apply to the recreational sector.
 - (1) For fishing year 2015—3.234 million lb (1.467 million kg), round weight.
 - (2) For fishing year 2016—3.320 million lb (1.506 million kg), round weight.
 - (3) For fishing year 2017—3.266 million lb (1.481 million kg), round weight.

APPENDIX F. HISTORICAL RECREATIONAL LANDINGS TABLES

Table F.1. Landings of Gulf red snapper by private anglers, charter vessels, and headboats in pounds and as a percentage of total recreational landings. Landings are in whole weight.

Year	Private Ang		Charter Ves		Headboats	
	Pounds	% of Total	Pounds	% of Total	Pounds	% of Total
	(ww)	Landings	(ww)	Landings	(ww)	Landings
1986	998,293	28.7%	2,073,231	59.5%	410,487	11.8%
1987	703,341	33.9%	959,787	46.3%	411,039	19.8%
1988	1,489,226	47.5%	1,031,660	32.9%	614,154	19.6%
1989	1,192,701	40.6%	758,131	25.8%	986,440	33.6%
1990	642,472	39.7%	598,465	37.0%	378,313	23.4%
1991	859,336	29.7%	1,547,479	53.5%	483,673	16.7%
1992	2,366,753	52.0%	1,230,743	27.1%	950,061	20.9%
1993	2,956,690	42.0%	2,703,727	38.4%	1,384,388	19.7%
1994	2,459,439	40.8%	2,043,356	33.9%	1,525,449	25.3%
1995	2,239,101	41.4%	1,812,774	33.5%	1,357,623	25.1%
1996	1,775,334	33.6%	2,102,334	39.8%	1,408,778	26.6%
1997	2,769,613	41.4%	2,615,653	39.1%	1,304,411	19.5%
1998	1,498,601	31.0%	2,204,048	45.7%	1,124,744	23.3%
1999	2,663,289	54.3%	1,542,631	31.5%	698,968	14.3%
2000	2,113,756	44.9%	1,833,279	38.9%	763,287	16.2%
2001	2,846,830	54.3%	1,824,487	34.8%	573,486	10.9%
2002	3,037,152	46.6%	2,659,791	40.8%	824,802	12.6%
2003	2,987,156	49.0%	2,314,989	38.0%	791,897	13.0%
2004	3,198,600	49.5%	2,568,368	39.8%	693,276	10.7%
2005	2,175,730	46.5%	1,973,852	42.2%	526,336	11.3%
2006	1,692,246	41.0%	1,862,648	45.1%	576,238	13.9%
2007	3,142,991	54.1%	2,178,798	37.5%	487,004	8.4%
2008	2,298,321	56.7%	1,349,603	33.3%	407,950	10.1%
2009	3,362,349	60.1%	1,428,615	25.5%	805,893	14.4%
2010	1,784,709	67.4%	433,133	16.4%	429,527	16.2%
2011	4,891,368	72.6%	1,212,177	18.0%	630,562	9.4%
2012	5,284,921	70.2%	1,515,243	20.1%	724,078	9.6%
2013	8,145,917	84.0%	1,111,709	11.5%	445,276	4.6%
2014	3,268,558	85.2%	184,589	4.8%	382,289	10.0%
2015	3,806,474	63.9%	1,573,451	26.4%	580,226	9.7%
2016	5,299,312	71.2%	1,616,241	21.7%	526,575	7.1%

Source: SEFSC ACL database updated as of 11/22/17. Landings based on the Marine Recreational Information Program (MRIP) dataset.

Table F.2. Landings of greater amberjack by private anglers, charter vessels, and headboats in pounds and as a percentage of total recreational landings. Landings are in whole weight.

Year	Private	Anglers	Charter	Vessels	Head	boats
	Pounds	% of Total	Pounds	% of Total	Pounds	% of Total
	(ww)	Landings	(ww)	Landings	(ww)	Landings
1986	1,940,902	30%	3,716,026	58%	750,632	12%
1987	1,420,627	25%	3,953,664	69%	378,888	7%
1988	933,832	39%	1,268,731	53%	173,613	7%
1989	3,784,512	60%	2,318,165	37%	204,289	3%
1990	633,453	63%	298,637	30%	77,654	8%
1991	194,685	6%	2,931,139	91%	102,687	3%
1992	730,845	24%	1,957,427	65%	312,152	10%
1993	709,847	27%	1,716,955	65%	225,868	9%
1994	427,551	23%	1,230,955	66%	213,119	11%
1995	474,687	53%	275,060	31%	143,994	16%
1996	627,325	42%	728,343	49%	139,588	9%
1997	354,634	29%	755,963	61%	125,349	10%
1998	233,220	33%	385,712	55%	88,595	13%
1999	361,220	40%	460,693	51%	73,508	8%
2000	331,053	32%	604,364	58%	100,732	10%
2001	791,315	55%	563,208	39%	89,436	6%
2002	857,969	39%	1,163,645	53%	160,636	7%
2003	1,676,183	56%	1,121,240	37%	199,347	7%
2004	1,214,647	49%	1,150,453	47%	108,769	4%
2005	1,089,981	69%	426,940	27%	61,281	4%
2006	652,668	36%	1,067,544	59%	79,892	4%
2007	429,347	39%	610,073	56%	59,436	5%
2008	821,597	59%	521,032	37%	54,544	4%
2009	723,964	48%	689,056	45%	103,191	7%
2010	891,292	61%	527,159	36%	53,203	4%
2011	303,351	30%	635,457	63%	62,835	6%
2012	654,135	46%	654,564	46%	99,680	7%
2013	949,365	57%	640,962	39%	73,246	4%
2014	635,176	53%	515,791	43%	46,435	4%
2015	593,851	40%	822,126	56%	58,513	4%
2016	1,502,374	71%	603,536	28%	20,210	1%

Data source: The SEFSC ACL database updated as of 11/22/17. Greater amberjack utilized landings based on the Marine Recreational Information Program (MRIP) dataset.

Table F.3. Landings of gray triggerfish by private anglers, charter vessels, and headboats in pounds and as a percentage of total recreational landings. Landings are in whole weight.

Year	Private	of total recrea Anglers	Charter		Head	
	Pounds	% of Total	Pounds	% of Total	Pounds	% of Total
	(ww)	Landings	(ww)	Landings	(ww)	Landings
1986	106,872	10%	925,203	83%	89,306	8%
1987	354,711	30%	780,151	65%	63,366	5%
1988	567,226	38%	828,216	56%	90,108	6%
1989	702,209	49%	573,283	40%	151,513	11%
1990	801,975	30%	1,683,008	63%	198,796	7%
1991	291,587	14%	1,668,651	79%	153,049	7%
1992	597,114	43%	621,343	45%	170,053	12%
1993	390,209	28%	796,563	58%	183,066	13%
1994	199,082	17%	779,040	67%	186,036	16%
1995	273,344	22%	793,885	64%	171,741	14%
1996	152,526	26%	316,506	53%	124,892	21%
1997	200,695	29%	384,164	55%	109,031	16%
1998	222,257	42%	218,361	41%	88,623	17%
1999	230,432	48%	175,948	37%	69,481	15%
2000	244,449	52%	161,988	35%	61,995	13%
2001	170,516	37%	219,668	48%	67,528	15%
2002	321,771	47%	278,971	40%	90,952	13%
2003	455,960	57%	241,510	30%	104,409	13%
2004	502,784	53%	343,060	36%	100,066	11%
2005	238,096	41%	261,489	45%	84,130	14%
2006	229,724	51%	164,034	36%	58,178	13%
2007	218,001	51%	147,138	34%	62,685	15%
2008	191,860	46%	178,832	43%	48,584	12%
2009	280,642	70%	85,770	21%	34,615	9%
2010	184,453	62%	86,149	29%	25,756	9%
2011	220,962	48%	190,138	41%	50,449	11%
2012	205,066	73%	56,101	20%	18,706	7%
2013	338,917	74%	90,606	20%	27,119	6%
2014	173,017	79%	36,176	17%	8,693	4%
2015	84,521	90%	5,549	6%	4,112	4%
2016	227,340	53%	175,726	41%	29,576	7%

Data source: The SEFSC ACL database updated as of 11/22/17. Gray triggerfish utilized landings based on Marine Recreational Fisheries Statistics Survey (MRFSS) dataset.

Table F.4. Landings of gag by private anglers, charter vessels, and headboats in pounds and as a

percentage of total recreational landings. Landings are in gutted weight.

Year	Private			Vessels	Headboats	
	Pounds	% of Total	Pounds	Pounds % of Total		% of Total
	(ww)	Landings	(ww)	Landings	(ww)	Landings
1986	2,244,831	66%	845,617	25%	314,929	9%
1987	1,735,365	66%	733,572	28%	173,424	7%
1988	4,122,010	84%	646,650	13%	133,064	3%
1989	2,467,901	83%	282,829	9%	237,736	8%
1990	1,088,456	75%	214,819	15%	140,173	10%
1991	1,728,740	91%	99,372	5%	78,068	4%
1992	1,326,482	75%	365,056	21%	85,233	5%
1993	1,604,335	66%	616,006	26%	193,614	8%
1994	1,506,803	77%	331,220	17%	130,902	7%
1995	1,841,909	69%	699,668	26%	110,269	4%
1996	1,511,647	73%	483,343	23%	84,692	4%
1997	1,891,563	69%	777,962	28%	84,038	3%
1998	2,177,577	62%	1,158,066	33%	197,004	6%
1999	2,622,046	70%	944,661	25%	161,619	4%
2000	3,718,421	72%	1,222,896	24%	194,414	4%
2001	3,058,129	72%	1,056,731	25%	113,393	3%
2002	3,209,056	78%	838,048	20%	77,618	2%
2003	2,707,123	75%	799,659	22%	106,705	3%
2004	4,036,002	76%	1,123,073	21%	164,688	3%
2005	2,668,549	70%	1,012,554	27%	109,305	3%
2006	1,819,859	72%	670,831	26%	47,862	2%
2007	1,799,635	81%	363,440	16%	72,155	3%
2008	2,318,570	74%	761,224	24%	72,718	2%
2009	1,057,665	71%	372,603	25%	65,378	4%
2010	1,146,108	70%	427,972	26%	70,718	4%
2011	604,499	80%	99,474	13%	48,834	6%
2012	587,662	58%	386,935	38%	44,249	4%
2013	1,327,811	87%	165,327	11%	34,117	2%
2014	775,965	84%	110,067	12%	40,728	4%
2015	651,687	79%	142,425	17%	35,546	4%
2016	631,210	78%	151,336	19%	23,246	3%

Data source: The SEFSC ACL database updated as of 11/22/17. Gag utilized landings based on the Marine Recreational Information Program (MRIP) dataset.

Table F.5. Landings of red grouper by private anglers, charter vessels, and headboats in pounds

and as a percentage of total recreational landings. Landings are in gutted weight.

Year	Private			Vessels	Headboats	
	Pounds	% of Total	Pounds	% of Total	Pounds	% of Total
	(ww)	Landings	(ww)	Landings	(ww)	Landings
1986	2,107,729	87%	189,638	8%	112,910	5%
1987	1,044,429	80%	174,170	13%	84,369	6%
1988	2,384,437	90%	172,268	6%	99,121	4%
1989	2,539,667	90%	138,332	5%	128,851	5%
1990	825,992	68%	299,211	25%	87,319	7%
1991	1,820,531	94%	63,034	3%	57,955	3%
1992	2,694,023	88%	319,511	10%	50,240	2%
1993	2,095,264	89%	183,843	8%	72,633	3%
1994	1,983,169	89%	182,664	8%	52,815	2%
1995	1,657,030	76%	420,841	19%	89,895	4%
1996	795,892	78%	146,846	14%	80,504	8%
1997	465,095	72%	160,646	25%	23,957	4%
1998	633,634	77%	162,972	20%	22,269	3%
1999	1,035,350	80%	217,598	17%	45,810	4%
2000	1,587,178	64%	862,480	35%	48,717	2%
2001	1,154,531	73%	391,873	25%	30,181	2%
2002	1,566,830	82%	331,627	17%	23,508	1%
2003	1,170,023	77%	308,388	20%	38,489	3%
2004	3,127,653	83%	554,380	15%	65,145	2%
2005	891,544	60%	508,847	34%	75,009	5%
2006	1,007,336	77%	280,658	21%	25,479	2%
2007	887,878	82%	168,634	16%	24,674	2%
2008	551,884	61%	307,976	34%	37,604	4%
2009	732,435	75%	210,129	22%	29,583	3%
2010	482,357	60%	293,827	37%	26,064	3%
2011	366,776	57%	238,792	37%	36,697	6%
2012	1,220,598	67%	515,818	28%	83,324	5%
2013	1,747,859	66%	831,906	31%	77,542	3%
2014	1,233,596	69%	522,126	29%	45,107	3%
2015	1,032,362	52%	914,374	46%	50,621	3%
2016	1,011,789	67%	435,625	29%	56,851	4%

Data source: The SEFSC ACL database updated as of 11/22/17. Red grouper utilized landings based on the Marine Recreational Information Program (MRIP) dataset.

150

APPENDIX G. SUMMARY OF HABITAT UTILIZATION BY LIFE HISTORY STAGE FOR SPECIES IN THE REEF FISH FMP.

Common name	Eggs	Larvae	Early Juveniles	Late juveniles	Adults	Spawning adults
Red Snapper	Pelagic	Pelagic	Hard bottoms, Sand/ shell bottoms, Soft bottoms	Hard bottoms, Sand/ shell bottoms, Soft bottoms	Hard bottoms, Reefs	Sand/ shell bottoms
Queen Snapper	Pelagic	Pelagic	Unknown	Unknown	Hard bottoms	
Mutton Snapper	Reefs	Reefs	Mangroves, Reefs, SAV, Emergent marshes	Mangroves, Reefs, SAV, Emergent marshes	Reefs, SAV	Shoals/ Banks, Shelf edge/slope
Blackfin Snapper	Pelagic		Hard bottoms	Hard bottoms	Hard bottoms, Shelf edge/slope	Hard bottoms, Shelf edge/slope
Cubera Snapper	Pelagic		Mangroves, Emergent marshes, SAV	Mangroves, Emergent marshes, SAV		Reefs
Gray Snapper	Pelagic, Reefs	Pelagic, Reefs	Mangroves, Emergent marshes, Seagrasses	Mangroves, Emergent marshes, SAV	Emergent marshes, Hard bottoms, Reefs, Sand/ shell bottoms, Soft bottoms	
Lane Snapper	Pelagic		Mangroves, Reefs, Sand/ shell bottoms, SAV, Soft bottoms	Mangroves, Reefs, Sand/ shell bottoms, SAV, Soft bottoms	Reefs, Sand/ shell bottoms, Shoals/ Banks	Shelf edge/slope
Silk Snapper	Unknown	Unknown	Unknown	Unknown	Shelf edge	
Yellowtail Snapper	Pelagic		Mangroves, SAV, Soft bottoms	Reefs	Hard bottoms, Reefs, Shoals/ Banks	

Common name	Eggs	Larvae	Early Juveniles	Late juveniles	Adults	Spawning adults
Wenchman	Pelagic	Pelagic			Hard bottoms, Shelf edge/slope	Shelf edge/slope
Vermilion Snapper	Pelagic		Hard bottoms, Reefs	Hard bottoms, Reefs	Hard bottoms, Reefs	
Gray Triggerfish	Reefs		Drift algae, Sargassum	Drift algae, Reefs, Sargassum	Reefs, Sand/ shell bottoms	Reefs, Sand/ shell bottoms
Greater Amberjack	Pelagic	Pelagic	Drift algae	Drift algae	Pelagic, Reefs	Pelagic
Lesser Amberjack			Drift algae	Drift algae	Hard bottoms	Hard bottoms
Almaco Jack	Pelagic		Drift algae	Drift algae	Pelagic	Pelagic
Banded Rudderfish		Pelagic	Drift algae	Drift algae	Pelagic	Pelagic
Hogfish			SAV	SAV	Hard bottoms, Reefs	Reefs
Blueline Tilefish	Pelagic	Pelagic			Hard bottoms, Sand/ shell bottoms, Shelf edge/slope, Soft bottoms	
Tilefish (golden)	Pelagic, Shelf edge/ Slope	Pelagic	Hard bottoms, Shelf edge/slope, Soft bottoms	Hard bottoms, Shelf edge/slope, Soft bottoms	Hard bottoms, Shelf edge/slope, Soft bottoms	
Goldface Tilefish	Unknown					
Speckled Hind	Pelagic	Pelagic			Hard bottoms, Reefs	Shelf edge/slope
Yellowedge Grouper	Pelagic	Pelagic		Hard bottoms	Hard bottoms	

Common name	Eggs	Larvae	Early Juveniles	Late juveniles	Adults	Spawning adults
Atlantic Goliath Grouper	Pelagic	Pelagic	Mangroves, Reefs, SAV	Hard bottoms, Mangroves, Reefs, SAV	Hard bottoms, Shoals/ Banks, Reefs	Reefs, Hard bottoms
Red Grouper	Pelagic	Pelagic	Hard bottoms, Reefs, SAV	Hard bottoms, Reefs	Hard bottoms, Reefs	
Warsaw Grouper	Pelagic	Pelagic		Reefs	Hard bottoms, Shelf edge/slope	
Snowy Grouper	Pelagic	Pelagic	Reefs	Reefs	Hard bottoms, Reefs, Shelf edge/slope	
Black Grouper	Pelagic	Pelagic	SAV	Hard bottoms, Reefs	Hard bottoms, Mangroves, Reefs	
Yellowmouth Grouper	Pelagic	Pelagic	Mangroves	Mangroves, Reefs	Hard bottoms, Reefs	
Gag	Pelagic	Pelagic	SAV	Hard bottoms, Reefs, SAV	Hard bottoms, Reefs	
Scamp	Pelagic	Pelagic	Hard bottoms, Mangroves, Reefs	Hard bottoms, Mangroves, Reefs	Hard bottoms, Reefs	Reefs, Shelf edge/slope
Yellowfin Grouper			SAV	Hard bottoms, SAV	Hard bottoms, Reefs	Hard bottoms

Source: Adapted from Table 3.2.7 in the final draft of the EIS from the Generic EFH Amendment (GMFMC 2004a) and consolidated in this document.