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1  | INTRODUC TION

The relative importance of environmental and intrinsic controls on 
population growth has been a source of controversy in ecology since 
the beginning (Andrewartha & Birch, 1954; Howard & Fiske, 1911; 
Nicholson, 1954; etc). Like many dichotomies in ecology, this bat-
tle has dissipated in the middle ground where both factors appear 
relevant (e.g. Dixon, Milicich, & Sugihara, 1999; Milne, 1962; Orians, 
1962). Nevertheless, predicting changes in abundance remains an 
important goal in applied ecology, where models that separate in-
trinsic and extrinsic dynamics form the foundation for conservation 
and management decisions for threatened and harvested species.

Like their terrestrial counterparts, fisheries oceanographers 
grapple with the balance of intrinsic dynamics and environmental 

drivers. The number of new fish recruiting to a population may vary 
over an order of magnitude from year to year, with serious conse-
quences for fisheries management and food security (Glantz, 2005). 
For much of the last century, fisheries oceanographers have at-
tempted to solve this “recruitment problem.” Since the seminal work 
of Hjort (1914, 1926), numerous factors influencing recruitment 
have been identified.

During early life stages, fish growth is dominated by environ-
mental conditions, while mortality rates are extremely high and 
size- dependent (Bailey & Houde, 1989; Perez & Munch, 2010). Early 
growth and survival are also influenced by oceanographic conditions 
such as turbulence (MacKenzie, 2000; Rothschild & Osborn, 1988), 
stratification (e.g. Jenkins, Conron, & Morison, 2010; Lasker, 1975) 
and larval transport (e.g. Checkley, Raman, Maillet, & Mason, 1988; 

 

Received: 21 November 2017  |  Revised: 9 May 2018  |  Accepted: 23 May 2018

DOI: 10.1111/faf.12304

O R I G I N A L  A R T I C L E

Nonlinear dynamics and noise in fisheries recruitment: A global 
meta- analysis

Stephan B. Munch1,2  | Alfredo Giron-Nava3  | George Sugihara3

1Fisheries Ecology Division, Southwest 
Fisheries Science Center, National Marine 
Fisheries Service, National Oceanic and 
Atmospheric Administration, Santa Cruz, 
California
2Department of Ecology and Evolutionary 
Biology, University of California, Santa Cruz, 
California
3Scripps Institution of Oceanography, UC 
San Diego, La Jolla, California

Correspondence
Stephan B. Munch, Fisheries Ecology 
Division, Southwest Fisheries Science 
Center, National Marine Fisheries Service, 
National Oceanic and Atmospheric 
Administration, 110 Shaffer Rd., Santa Cruz, 
CA 95060.
Email: steve.munch@noaa.gov

Funding information
Lenfest Oceans Program, Model-free 
Ecosystem-based Fisheries Management

Abstract
The relative importance of environmental and intrinsic controls on recruitment in 
fishes has been studied for over a century. Despite this, we are not much closer to 
predicting recruitment. Rather, recent analyses suggest that recruitment is virtually 
independent of stock size and, instead, seems to occur in distinct environmental re-
gimes. This issue of whether or not recruitment and subsequent production are cou-
pled to stock size is highly relevant to management. Here, we apply empirical 
dynamical modelling (EDM) to a global database of 185 fish populations to address 
the questions of whether or not variation in recruitment is (a) predictable and (b) 
coupled to stock size. We find that a substantial fraction of recruitment variation is 
predictable using only the observed history of fluctuations (~40% on average). In ad-
dition, although recruitment is often coupled to stock size (107 of 185 stocks), stock 
size alone explains very little of the variation in recruitment; In ~90% of the stocks 
analysed, EDM forecasts have substantially lower prediction error than models based 
solely on stock size. We find that predictability varies across taxa and improves with 
the number of generations that have been sampled. In the light of these results, we 
suggest that EDM will be of greatest use in managing relatively short- lived species.

K E Y W O R D S

empirical dynamical modelling, gaussian process regression, recruitment, time-delay 
embedding

http://orcid.org/0000-0001-7471-5429
http://orcid.org/0000-0002-3433-9251
mailto:steve.munch@noaa.gov
http://crossmark.crossref.org/dialog/?doi=10.1111%2Ffaf.12304&domain=pdf&date_stamp=2018-07-12


     |  965MUNCH et al.

Epifanio, Masse, & Garvine, 1989), as well as temperature, salinity 
and dissolved oxygen concentrations (e.g. Köster et al., 2005). Biotic 
factors such as food availability (Bergenius, Meekan, Robertson, 
& McCormick, 2002; Cushing, 1990), predator abundance (Bailey 
& Houde, 1989), competition (Holbrook & Schmitt, 2002), the age 
composition of the population (Marteinsdottir & Thorarinsson, 
1998; Shelton, Munch, Keith, & Mangel, 2012) and maternal effects 
(Berkeley, Chapman, & Sogard, 2004; Green, 2008) also contribute 
to variation in egg production, growth and early survival.

Despite the substantial increase in our understanding of recruit-
ment ecology, we are not much closer to predicting recruitment. 
Most recruitment–environment correlations become nonsignificant 
within a few years of their publication (Myers, 1998). As a conse-
quence, contemporary fisheries management rarely makes use of 
environmental drivers or other ecosystem indicators when setting 
harvest rates (Skern- Mauritzen et al., 2016). Rather, simple models 
are used to relate current reproductive output, often indexed by 
some measure of population biomass, to the production of juve-
niles recruiting to the population. These “stock–recruitment” models 
typically explain very little of the observed variation in recruitment 
(Cury, Fromentin, Figuet, & Bonhommeau, 2014; Lowerre- Barbieri 
et al., 2017); deviations up to an order of magnitude are considered 
the norm and generally attributed to environmental stochasticity 
and/or measurement error. Nevertheless, the parameters of these 
models are often critical in setting benchmarks for fisheries manage-
ment (Mangel et al., 2013).

In the light of the complexity of processes governing recruit-
ment and the apparent dominance of environmental stochasticity, 
several authors have claimed that prediction using fisheries models 
is unattainable (Glaser et al., 2014; Schindler & Hilborn, 2015) and 
solving the “recruitment problem” is impossible (Lowerre- Barbieri 
et al., 2017; Ottersen et al., 2014). In addition, several recent analy-
ses suggest that the productivity of fish populations is independent 
of population size; rather, seemingly discrete changes in productivity 
are interpreted as environmental regimes leading to the conclusion 
that very little of the observed variation in fished populations re-
sults from intrinsic dynamics (Szuwalski, Vert- Pre, Punt, Branch, & 
Hilborn, 2015; Vert- Pre, Amoroso, Jensen, & Hilborn, 2013). If this 
is the case, then fishing—which clearly affects current population 
size—can have very little influence on the long- term dynamics of har-
vested populations. Moreover, as fisheries management attempts to 
maximize production by manipulating fishing effort, the question of 
whether or not population size and recruitment are causally coupled 
is highly relevant (Pierre, Rouyer, Bonhommeau, & Fromentin, 2017). 
But how best to predict recruitment and identify its causal drivers in 
the face of considerable empirical complexity is unclear.

We hypothesize that a substantial fraction of the apparent in-
determinism in recruitment, often attributed to environmental sto-
chasticity, arises from collapsing complex recruitment dynamics into 
low- dimensional indices. Takens’ theorem of time- delay embedding 
(Takens, 1981) and its generalizations (Sauer, Yorke, & Casdagli, 
1991; Stark, Broomhead, Davies, & Huke, 2003) offer a way around 
this problem. Time- delay embedding uses lags of observed variables 

to construct synthetic axes that account for unobserved variables. 
For example, time lags of abundance for a focal species can be used 
to implicitly account for variations in the abundance of other, unmea-
sured, species with which it interacts. This is particularly effective at 
reconstructing low- dimensional dynamics. But extrinsic drivers, like 
the weather, typically emerge from very- high- dimensional systems. 
As the number of dimensions we can resolve with time lags is limited 
by the time- series length (Cheng & Tong, 1994), we expect extrinsic 
forcing to be sufficiently high- dimensional as to appear essentially 
stochastic. In the light of this, we operationally define any dynam-
ics that can be recaptured with a low- dimensional embedding as 
“intrinsic.”

In ecology, Takens’ theorem was initially used to uncover low- 
dimensional chaos (Schaffer, 1984) and distinguish observational 
noise from nonlinear dynamics (Sugihara, 1994; Sugihara & May, 
1990; Sugihara et al., 1990). Because these methods allow us to 
make inferences about dynamics directly from time series, they are 
currently referred to as empirical dynamical modelling (EDM). Here, 
we apply EDM to a global data set of stock assessments to address 
several fundamental questions on the relationship between current 
population biomass and recruits.

Pierre et al. (2017) recently addressed the question of whether 
stock biomass and recruitment are causally coupled, by applying 
convergent cross- mapping (CCM, Sugihara et al., 2012) to 53 time 
series of stock and recruits. They found that although stock size and 
recruitment were often coupled, stock size did not contribute much 
to prediction accuracy. In addition, they showed that nonlinear fore-
casting using S- map (Sugihara, 1994) typically produced predictions 
that were better than chance. This analysis is an important first step, 
but leaves open several questions including: How much of the vari-
ation in recruitment can be explained using time- delay embedding? 
How well do EDM predictions compare with those of existing mod-
els? and What factors influence differences in the degree of predict-
ability among stocks?

To address these questions, we expanded the number of stocks 
analysed from 53 to 185. From this larger data set, we reconsider 
the question of whether biomass and recruits are causally coupled 
using convergent cross- mapping (Sugihara et al., 2012). Next, using 
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Gaussian process–EDM (Munch, Poynor, & Arriaza, 2017), we ex-
plicitly quantify what fraction of the observed variation in recruit-
ment can be explained by intrinsic dynamics. We then benchmark 
our predictions against several commonly used models. At last, we 
evaluate the importance of life history and assessment method in 
determining the results.

2  | METHODS

2.1 | Database selection

Ransom Myers and colleagues assembled a global database of stock 
sizes and recruitment estimates for over 600 fish populations, rep-
resenting 100 species from marine and freshwater environments 
(Myers, Barrowman, Hutchings, & Rosenberg, 1995; Myers, Bridson, 
& Barrowman, 1995; hereafter referred to as the RAM database). 
The database also tracks the methods used in estimation, the site 
or management area the data represent, and life history param-
eters for each population. Recruitment in this database refers to the 
abundance of a cohort as it enters the fishery. More details on the 
database are provided in Ref. (Myers & Barrowman, 1996; Myers, 
Bridson et al., 1995).

All populations with at least 20 years of both stock size and re-
cruitment data were included in our analysis, representing 185 popu-
lations from 49 species, spanning eight Orders. First, we determined 
how much of the intrinsic variation in recruitment is accounted for 
by stock biomass. Second, we evaluated how the predictability of 
recruitment varies with the life histories of the species analysed. 
Third, we tested whether the intrinsic dynamics we recover can be 
adequately described with a linear model. Several recent studies 
have cautioned against treating assessment model outputs as data 
in meta- analyses (Brooks & Deroba, 2015). Fortunately, the RAM da-
tabase includes estimates obtained using a variety of tools, ranging 
from direct observations of juveniles in surveys to statistical catch- 
at- age models. And so, fourth, we evaluated how our results vary 
across several coarse categories of estimation methods that differ 
in their structural assumptions. For all comparisons, we used leave- 
one- out cross- validation to approximate out- of- sample prediction.

2.2 | Convergent cross- mapping

Empirical dynamical modelling is based on “attractor reconstruction” 
using time- delay embedding (Takens, 1981). The fundamental idea is 
that for an M- dimensional system that converges to a d- dimensional 
attractor, we can reconstruct the attractor from a single time se-
ries of observations, say yt, t = 1,…, T. This is done using lags of y (at 
time step τ) as surrogate coordinates, that is, yt = {yt, yt−τ, …, yt−Eτ}. 
Provided that the embedding dimension, E, is >2M (Takens, 1981) 
and T is sufficiently large, the collection of delay coordinate vectors, 
{yE + 1, …, yT} reconstructs (i.e. “embeds”) the attractor.

As Takens’ theorem holds generically for any observable from 
the M- dimensional system, alternate reconstructions using different 
observables share a common attractor. Convergent cross- mapping 

(Sugihara et al., 2012) exploits this to identify whether two variables 
are causally coupled. In particular, if x and y share a common attrac-
tor, then we expect contemporaneous values x to map to nearby 
points on the attractor reconstructed with y, and vice versa. CCM 
has been used to identify drivers of climate change (Van Nes et al., 
2015), flu outbreaks (Deyle, Maher, Hernandez, Basu, & Sugihara, 
2016) and gene expression (Ma, Aihara, & Chen, 2014). Here, we 
applied CCM to test whether recruitment is causally driven by the 
size of the adult population (indexed by stock biomass) and how this 
changes across different methods for estimating recruitment. To do 
so, we estimated the predictive capacity of the stock biomass time 
series on the recruits’ time series (ρoriginal). We then tested the sig-
nificance of the causal relationship detected by CCM by generating 
100 surrogate shuffles of the recruits’ time series and calculating the 
predictive capacity of the original stock biomass time series on each 
of them (ρsurrogate). A relationship was considered significant when 
ρoriginal was higher than the 95th percentile of the distribution of ρsur-

rogate values (p < 0.05).

2.3 | Gaussian process–EDM

Although CCM provides a robust approach to testing for causal cou-
pling, it does not address the question about the relative importance 
of intrinsic and extrinsic dynamics. To address this question, we op-
erationally define any dynamics that can be recaptured with a low- 
dimensional embedding as “intrinsic” and use time- delay embedding 
to make predictions of recruitment. Doing so involves estimating 
the map from past states to the future using lag coordinates, that 
is, yt = f(yt−1, …, yt-E). This map may be inferred using any of a variety 
of function approximation tools including polynomials (e.g. Ellner & 
Turchin, 1995), local linear regression (Sugihara, 1994), support vector 
machines (e.g. Mukherjee, Osuna, & Girosi, 1997) and neural networks 
(e.g. Bakker, Schouten, Giles, Takens, & Van Den Bleek, 2006). Here, 
we used Gaussian process regression (Munch et al., 2017; Rasmussen 
& Williams, 2006) to estimate the map from the past to the future and 
quantify the intrinsic component of recruitment dynamics (defined 
below). The GP approach extends the EDM toolkit by allowing auto-
matic lag selection, incorporating information from multiple sources 
using hierarchical modelling and allowing for nonstationary dynam-
ics (Munch et al., 2017). Gaussian process regression has been used 
in population modelling to estimate the form of density dependence 
(Munch, Kottas, & Mangel, 2005), test for the presence of Allee ef-
fects (Sugeno & Munch, 2013a,b) and to assess model misspecification 
(Thorson, Ono, & Munch, 2014).

Traditional stock–recruitment (SR) models assume that recruit-
ment is some function of the current population (i.e. stock) biomass, 
written as Rt = αStg (St), where R is recruitment, S is stock size, and α is 
the maximum rate of reproduction (Myers, Barrowman et al., 1995). 
The function g(S) accounts for density dependence. This model is 
typically fit on a log scale where it is rewritten as ln [Rt/St] = ln[α] + 
ln[g(St)] + εt, εt ~ N(0, σ2

�
). Letting yt = ln [Rt/St], a natural extension of 

this model in an EDM framework is to write 
yt= f(St,… ,St−E,yt−1,… , yt−E)+�t
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where f is the unknown mapping from the past states of the system 
to the present and E is the embedding dimension. An obvious alter-
native would be to use EDM to estimate a model of the form Rt = f(St, 
…, St−E, Rt−1, …, Rt−E). Although we do not show the results for this 
alternative, they are qualitatively identical to those presented below.

To simplify notation, let xt = {St, …, St−E, yt−1, … , yt−E} represent 
the “current” state in delay coordinates. We used GP regression 
with a tensor product kernel to fit a model of the form yt = f(xt) + εt, 
εt ~ N(0, σ2

3
 ) for t ϵ {E + 1, …, T}. In particular, we set Cov[f(xt), 

f(xs)] = �2
∏Emax

i=1
exp(−�i�{xt}i−{xs}i�2∕ri) where the factor ri = maxt 

{xt}i − mini {xt}i scales the ith distance to stay in [0,1] and the length- 
scale parameters, ϕi, control the “wiggliness” of f in the ith direction. 
The product is taken over all lags from 1 to the maximum embedding 
dimension, Emax. In the light of the relatively short time series avail-
able in the RAM database, we set the maximum E for S and y to 5 so 
that Emax = 11.

Previous analyses based on S- map (e.g. Deyle et al., 2013; Pierre 
et al., 2017) use a fixed lag for each coordinate. In particular, the time 
step was set to one and all lags up to E are included in the model. 
But, not all lags are equally important to the dynamics and the best 
embedding may involve several lags with uneven spacing to account 
for effects on different time scales (see e.g. Judd & Mees, 1998). 
A trivial ecological example would be delayed density dependence, 
nt = nt−1 f(nt−τ), in which the next population size is a function of the 
previous population size and the population size τ years ago. A re-
construction that includes all lags up to τ, that is {nt−1, nt−2, …, nt−τ}, 
is perfectly acceptable under Takens, but clearly includes lags that 
are unnecessary (nt−2, … , nt−τ−1). Thus, rather than conducting an ex-
haustive search, we used automatic relevance determination (Neal, 
1996) to select lags and identify a parsimonious model. In particular, 
we used a penalty function to shrink ϕi towards zero, which auto-
matically selects relevant lags (Munch et al., 2017). Further details 

on GP implementation are provided in the Supporting Information 
(Appendix S2). The text by Rasmussen and Williams (2006) is an ex-
cellent source for additional background on GP modelling.

We apply this method to all 185 time series to quantify the 
intrinsic predictability of recruitment. In particular, if VEDM is the 
mean- squared out- of- sample prediction error for y, and VY is vari-
ance in y, πEDM = 1 − VEDM/VY is the predictable fraction of varia-
tion. Note that πEDM is not restricted to [0,1], a priori, because it 
is estimated out- of- sample; VEDM could be greater than VY if the 
predictions are biased or out of phase. In this case, πEDM < 0 would 
indicate that the model is worse than using the sample mean to 
make a prediction.

We next determined how much of the explainable variation in 
recruitment is driven by stock biomass. The natural comparison here 
would be to use a GP with the current stock size as the sole input 
(e.g. Munch et al., 2005; Sugeno & Munch, 2013a,b). However, most 
readers will be unfamiliar with this method, so we also determined 
how much of the variation in recruitment could be explained by 
three commonly used stock–recruitment models: Ricker, Beverton- 
Holt and Schnute (See Supporting Information Appendix S3 for 
model definitions and fitting methods). To determine whether the 
apparent predictability of recruitment can be explained as autocor-
related noise, we also fit autoregressive models using the same in-
puts provided to the GP.

Last, we addressed whether the predictability of recruitment var-
ies across Orders and estimation methods. Because we are quantify-
ing predictability in terms of mean- squared errors, we tested these 
effects using generalized linear models with a gamma likelihood.

3  | RESULTS

In keeping with earlier results by Pierre et al. (2017), we find that 
causal coupling between stock and recruitment is fairly common 
(Figure 1). CCM identified significant causal coupling between stock 
size and recruits for 107 of the 185 time series tested (Figure 1). In 
addition, we find compelling evidence for intrinsic dynamics in re-
cruitment. The GP- EDM approach explains 39% of the variation on 
average with an interquartile range of (20%, 54%).

The fishes we analysed have diverse life histories, ranging 
from the relatively short- lived Salmoniformes and Clupeiformes to 
the much long- lived Pleuronectiformes and Scorpaeniformes. It is 
therefore not surprising that the relative performance of EDM var-
ies significantly among taxa (likelihood ratio comparing prediction 
error among orders: 39.6, df = 7, p < 0.0001). From this cross- taxon 
comparison, it appears that our prediction error tends to increase 
with the generation time, as indexed by the ages at recruitment and 
maturation, and decrease with the ratio of the time- series length to 
generation time (Figure 2a–c).

In the GP- EDM framework, the effective embedding dimension 
is determined by the number of lags for which the inverse length- 
scale parameter is above a threshold (of say, 0.1, Munch et al., 2017). 
Although Emax was set to 11, the effective E was 4 or less in 96% of 

F IGURE  1 Fraction of series for which recruitment was shown 
to be causally driven by the size of the adult population (indexed by 
stock biomass) across methods used to estimate recruitment. BDM: 
biomass dynamic models (n = 62); SCA, statistical catch- at- age 
models (n = 4); SPA: sequential population analyses (n = 101); SUR, 
direct survey estimates (n = 18)
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the populations (177/185). In addition, E is >1 in 76% (140/185) of 
populations. These values for E are consistent with previous estimates 
for ecological time series (Glaser et al., 2014). It is important that in 
84% of the cases where the embedding dimension was >1, it is the 
previous history of recruitment, not stock size, that is most relevant. 
This observation is consistent with the results of Pierre et al. (2017) 
as well as empirical evidence that recruitment is controlled by factors 
affecting the early life history. But most important, it suggests that 
these early- life dynamics are not unpredictable.

As the RAM database aggregates stock and recruitment es-
timates generated with a wide range of analytical tools, it is im-
portant to determine whether the results depend on the method 
used. To summarize results, we aggregated these methods into 
four coarse categories: biomass dynamic models (BDM, n = 62), 
statistical catch- at- age models (SCA, n = 4), sequential population 
analyses (SPA, n = 101) and surveys (SUR, n = 18). For BDM and 
SCA outputs, CCM identified significant coupling between stock 
and recruits in 58% of the time series, with some variability across 
methods: 71% for BDM, 0% for SCA, 53% for SPA and 50% for 
SUR. It is interesting that recruitment estimates from surveys and 
sequential population analyses are significantly more predict-
able than estimates derived from biomass dynamic and statistical 

catch- at- age models (Figure 2d, log- likelihood ratio 13.5, df = 3, 
p = 0.003).

Thus far, we have found that recruitment is frequently coupled 
to stock size and that intrinsic dynamics contribute substantially to 
variation in recruitment. Next, we evaluated how much of the vari-
ation in recruitment could be explained solely in terms of current 
population biomass. To do so, we compared predictions from the 
GP- EDM to four stock–recruitment models (i.e. a GP with current 
stock size as the only input as well as three commonly used paramet-
ric SR models). EDM outperformed these single- input SR models for 
at least 83% of the populations analysed, explaining an additional 
25% of the variance on average (Table 2, Figure 3). Results for Ricker 
and Schnute models are plotted in Figure S1.

Two additional calculations help clarify how much of the predict-
able variation is missed by these single- input models. First, we can 
ask how often the fitted model is actually worse than using the series 
mean to make an out- of- sample prediction. While this rarely happens 
for GP- EDM (4%, Table 1 Column U), it is much more common for the 
single- input models (35%–40%, Table 2). Another way to character-
ize the results is in terms of the fraction of the variation explained by 
a stock–recruitment model relative to that explained by EDM, that is 
πSR/πEDM. Summarizing in terms of the median (interquartile range), 

F IGURE  2  Intrinsic variation in recruitment by Order and estimation method. (a–c) The vertical axis in each plot is the fraction 
of out- of- sample variation in recruitment predicted by EDM, that is πEDM as defined in Methods. Circles in each plot indicate means 
aggregated by Order: Clupeiformes (cyan), Gadiformes (red), Perciformes (yellow), Pleuronectiformes (magenta), Salmoniformes (blue), and 
Scorpaeniformes (black). The error bars indicate ±1 SE. The average fraction of explained variation for each Order is plotted against: (a) the 
age at maturation, (b) the age at recruitment to the fishery and (c) the number of generations sampled, as indexed by the length of the time 
series divided by the age at maturation. (d) Apparent changes in predictability across methods used to estimate recruitment. BDM, biomass 
dynamic models; SCA, statistical catch- at- age models; SPA, sequential population analyses; SUR, direct survey estimates [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the best SR model (Schnute) typically accounted for 26% (0%, 72%) 
of the intrinsic variation explained with EDM. Results for the other 
models were quite similar, Beverton- Holt: 20% (0%, 68%), Ricker: 
22% (0%, 64%), GP: 20% (0%, 63%).

As EDM is making use of more inputs than any of the 1- d mod-
els, we next compared EDM to linear autoregressive models that 
used the same collection of inputs. EDM produced lower predic-
tion errors 96% of the time. However, the out- of- sample error for 
the AR model was quite large because many of the time series are 
relatively short. To compensate for this, we introduced a regular-
izing penalty on the regression coefficients analogous to the auto-
matic relevance determination approach used in the GP (Supporting 
Information Appendices S2 and S3). Although the regularized AR 

model performed much better out of sample, EDM still explained an 
additional 36% of the variation on average. As both EDM and the AR 
use the same input data, we conclude that predictability of recruit-
ment under EDM is not due to simply using more explanatory vari-
ables; both the additional dimensions and nonlinearity are essential.

4  | DISCUSSION

Predictable, intrinsic dynamics account for roughly 40% of the ob-
served variation in recruitment. This result is not surprising—rather 
it is consistent with many previous experimental studies that have 
demonstrated effects of food availability, competition, predation, 
and maternal effects, etc. What is surprising—and considerably more 
important —is that in the absence of detailed data on these mecha-
nisms, we can use GP- EDM to make short- term predictions about re-
cruitment. This result based on 185 series supports and generalizes 
earlier analyses based on an S- map (Pierre et al., 2017). Of course, 
when additional driving variables are known they can be readily 

F IGURE  3 Predictability using intrinsic dynamics compared to 
models that use only current biomass (a, b) or linear dynamics (c). In 
each panel, the axes indicate the scaled mean- square error (i.e. the 
variance in predictions estimated by leave- one- out cross- validation 
divided by the total variance in y). The horizontal and vertical 
lines at 1 indicate the scaled mean- square error (SMSE) using only 
the sample mean for prediction. The diagonal is the 1:1 line. The 
horizontal axis in each panel is the prediction error using EDM, and 
the vertical axes are for (a) the Beverton–Holt SR model, (b) the 
GP- SR model and (c) the regularized AR model. Coloured points 
indicate results for each population in the database, coloured 
according to Order. Note that 16 populations with AR SMSE >1.5 
have been dropped from Panel (c) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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TABLE  1 Variance explained, summarized by Order. N is the 
number of time series within each order. Two additional Orders 
were excluded from this summary because they each had one time 
series. Mean is the average fraction of variance explained, 
calculated as 1 minus the prediction variance/total variance; 25th 
and 75th give the quartiles of the variance explained across the 
time series. p indicates the fraction of series for which the 
out- of- sample prediction error exceeded the variance

Order N Mean 25th 75th p

Clupeiformes 29 0.45 0.31 0.60 0.00

Gadiformes 50 0.41 0.21 0.57 0.03

Perciformes 12 0.51 0.35 0.60 0.00

Pleuronectiformes 12 0.43 0.08 0.74 0.02

Salmoniformes 73 0.32 0.14 0.46 0.00

Scorpaeniformes 7 0.41 0.12 0.67 0.17

Overall 185 0.39 0.20 0.54 0.04

TABLE  2 Variance explained by alternative approaches. The 
variance explained is calculated as 1 minus the prediction variance/
total variance. Values <0 indicate that the out- of- sample prediction 
error exceeds the variance; 25th and 75th give the quartiles of the 
variance explained across the time series. p indicates the fraction of 
series for which the out- of- sample prediction error exceeded the 
variance

Model Mean 25th 75th p

Beverton- Holt 0.11 −0.05 0.17 0.39

Ricker 0.04 −0.12 0.12 0.40

Schnute 0.12 −0.05 0.17 0.40

GP- SR 0.08 −0.01 0.06 0.35

AR −1.70 −3.58 0.19 0.70

AR(reg) −0.07 −0.40 0.29 0.50
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incorporated into this framework (Deyle et al., 2013; Dixon et al., 
1999; Ye et al., 2015). As prediction skill increases with the number 
of generations sampled, we expect these methods to be of greatest 
use for relatively short- lived fishes (see also Giron- Nava et al., 2017).

In keeping with previous applications of time- delay embedding, 
our implementation of GP- EDM implicitly assumed temporally un-
correlated errors. However, previous meta- analyses found that re-
cruitment deviations are typically autocorrelated, with an average 
value of ~0.45 (Thorson, Jensen, & Zipkin, 2014), which suggests 
that accounting for serial correlation within GP- EDM might be rele-
vant. Indeed, a fully general approach to embedding stochastic dy-
namics would include moving average terms for the residuals (Stark 
et al., 2003). To assess the importance of this for modelling recruit-
ment, we calculated autocorrelation coefficients for the residuals in 
all 185 time series. In contrast with earlier work, we found that lag- 1 
autocorrelation in residuals was quite small; the median was 0.04, 
and 79% of series had correlation coefficients <0.25 in absolute 
value. Fewer than 10% were significant (p < 0.05 using a Durbin–
Watson test, Durbin & Watson, 1971). Although we view including 
serial autocorrelation in GP- EDM as an important task for the future, 
we doubt that doing so would affect the results reported here.

Brooks and Deroba (2015) have cautioned against using as-
sessment model outputs as data in meta- analyses. Conveniently, 
the RAM database includes estimates that vary considerably in 
their structural assumptions ranging from survey data to statistical 
catch- at- age models. The CCM results were largely independent of 
the methods used to estimate recruitment. Moreover, estimates of 
recruitment from surveys and sequential population analyses are ac-
tually more predictable using GP- EDM than estimates derived from 
other models. Based on this, we conclude that the predictability of 
recruitment is not an artefact of modelling assessment model output.

Convergent cross- mapping identified significant coupling be-
tween stock and recruitment for the majority of populations in the 
database. This is particularly noteworthy in the light of several de-
cades of speculation on the existence of a stock–recruitment rela-
tionship (Ottersen et al., 2014; Rothschild, 2000; Strong, 1986) and 
recent analyses suggesting that productivity is independent of pop-
ulation size (Szuwalski et al., 2015; Vert- Pre et al., 2013). Despite 
this, our results are broadly consistent with these previous studies in 
that current population size, although coupled to recruitment does 
not by itself account for a large fraction of the intrinsic dynamics (see 
also Pierre et al., 2017). Other factors are clearly important.

In many species, distinct productivity “regimes” are apparent 
within which fluctuations appear random (Munch & Kottas, 2009; 
Vert- Pre et al., 2013). These regimes are, quite reasonably, inter-
preted as being driven by shifts in broad- scale environmental driv-
ers. Significant forcing by environmental regimes would seem to 
contradict our inference of intrinsic dynamics. It is therefore worth-
while to think about how we might reconcile intrinsic dynamics with 
the appearance of productivity regimes. A simple, if somewhat ab-
stract, example is illustrative.

Consider the case where local dynamics exhibit an Allee ef-
fect but are supplemented by immigrants from outside the focal 

area which subsequently compete with residents. In particular, 
we may think of the map {xn + 1 = xn exp[r(xn − α) (1 − xn/K)] + Rn 
exp[−μxn]}, where xn is population size, r is growth rate, K is the 
carrying capacity, and a is the Allee effect threshold below which 
residents go extinct in the absence of immigration. The second 
term represents the supply of immigrants with log [Rn] ~ N(m,σ) 
and resident- dependent mortality, μ. The resulting population size 
oscillates between two regimes within which dynamics appear 
“noisy” (see Supporting Information Appendix S5, Figure S2 for 
details). A piecewise constant “regime” model explains ~75% of the 
variance, which probably seems like a lot. However, the piecewise 
constant model foregoes any attempt to learn the within- regime 
dynamics. In contrast, given 30 data points, short- term predictions 
for this system using GP- EDM are almost perfect (R2 = 0.98). We 
do not mean to suggest that recruitment follows this particular 
model; many models exhibit such dynamics (see Figure S3). Rather, 
we suggest that the appearance of productivity regimes that seem 
independent of stock biomass is not inconsistent with intrinsic 
nonlinear dynamics that may be highly predictable.

The conventional perspective in fisheries is that deviations 
from the stock–recruitment model represent noise that is outside 
the bailiwick of both modelling and management. An implicit cor-
ollary is that fishing affects recruitment solely through changes in 
stock size. However, we have shown that these recruitment de-
viations are predictable using EDM; they are clearly not “noise.” 
Other mechanisms including species interactions, migration, 
contemporary evolution and environmental forcing are likely at 
play. Differentiating between these mechanisms has important 
operational consequences: If recruitment fluctuations are driven 
by interactions between several species that we are currently 
managing, maternal effects or contemporary evolution, then har-
vesting will surely influence recruitment beyond what is captured 
by changes in stock size. For example, Olsen et al. (2010) demon-
strated that the shape of the stock–recruitment curve changes 
with food availability in North Sea cod (Gadus morhua). Therefore, 
management actions that impact food availability, for example 
harvesting a forage species or a competitor, could lead to changes 
in cod productivity at a given stock size. It is not difficult to imag-
ine many other mechanisms through which harvesting one species 
can influence recruitment in another. In this context, CCM may be 
extremely useful in determining which potential mechanisms are 
active (Sugihara et al., 2012).

On the other hand, if recruitment fluctuations are driven by the 
environment, then there is not much that management can do other 
than leave precautionary margins for uncertainty—as is the standard 
practice (Walters & Collie, 1988). In this context, EDM may also be 
extremely useful by improving predictions of environment- driven 
fluctuations in recruitment (e.g. Ye et al., 2015). Our long- term goal 
must be to develop multispecies management strategies that allow 
for complex interactions among different life stages of interacting 
species. If possible, these should be robust to our uncertainty in how 
ecosystems function. Extending the EDM toolkit to produce robust 
harvest policies in multispecies systems is an important next step.
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