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Major oil spills immensely impact the environment and society. Coastal fishery-dependent communities are especially at risk as their fishing
grounds are susceptible to closure because of seafood contamination threat. During the Deepwater Horizon (DWH) disaster for example, vast
areas of the Gulf of Mexico (GoM) were closed for fishing, resulting in coastal states losing up to a half of their fishery revenues. To predict
the effect of future oil spills on fishery-dependent communities in the GoM, we develop a novel framework that combines a state-of-the-art
three-dimensional oil-transport model with high-resolution spatial and temporal data for two fishing fleets—bottom longline and bandit-
reel—along with data on the social vulnerability of coastal communities. We demonstrate our approach by simulating spills in the eastern
and western GoM, calibrated to characteristics of the DWH spill. We find that the impacts of the eastern and western spills are strongest in
the Florida and Texas Gulf coast counties respectively both for the bandit-reel and the bottom longline fleets. We conclude that this multi-
modal spatially explicit quantitative framework is a valuable management tool for predicting the consequences of oil spills at locations
throughout the Gulf, facilitating preparedness and efficient resource allocation for future oil-spill events.
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Introduction
The growth in global energy demands is leading to a consistent

increase in offshore gas and oil exploration and extraction in

deeper waters. Deeper waters are in turn more complicated for

containment of a spill or an uncontrolled blowout, similar to the

Deepwater Horizon disaster (DWH; Lubchenco et al., 2012).

During the DWH, �795 million litres of oil gushed into the Gulf

of Mexico (GoM) with oil slicks covering a cumulative estimated

area of 149 000 km2 (MacDonald et al., 2015). As a result, vast

areas of the GoM were closed to fishing, totalling an area greater

than a third of the US exclusive economic zone (Ylitalo et al.,

2012). Consequently, commercial and recreational landings de-

creased by 23 and 13% respectively (Murawski et al., 2016), with

losses estimated at US$4.9 and US$3.5 billion (Sumaila et al.,

2012). In Florida’s western counties, fishers resorted to travelling

longer distances or relocating to ports adjacent to alternative fish-

ing grounds. Overall, fishery landings declined by 25.3% from

2009 to 2010 (Murawski et al., 2016).

Although engineering and monitoring efforts are under way to

prevent another DWH, a fundamental challenge facing oil-spill
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management is to accurately estimate the extent of a given oil

spill before, during, and after it occurs, in order to evaluate trade-

offs between the economic returns of the oil against the risk asso-

ciated with a possible oil spill (Boehm and Page, 2007; Beyer

et al., 2016; Deepwater Horizon Natural Resource Damage

Assessment Trustees, 2016; Nelson and Grubesic, 2018a). Most

research into developing risk assessments of potential spills

(Fingas, 2011; Nelson and Grubesic, 2018a) builds off of ex post

damage assessments and outcomes of past events, e.g. area of

coastline contamination, number of organisms killed, and resto-

ration costs (Nelson et al., 2015; Deepwater Horizon Natural

Resource Damage Assessment Trustees, 2016; Nelson and

Grubesic, 2018b). We contribute to this literature by developing

an ex ante methodology to measure the potential impact on com-

munities from such disasters by combining spatial dynamic

modelling of a hypothetical spill with data on fishing fleet dynam-

ics and social vulnerability of communities (Figure 1). Spatially

explicit mapping of economic impacts will deepen our under-

standing of spills’ impacts, facilitating rapid, and efficient alloca-

tion of resources to threatened communities (Jepson, 2007).

Furthermore, although our focus in this paper is on the economic

losses stemming from fishing, our methodology can easily be

combined with other measures of economic damages (e.g. loss in

tourism, biodiversity) to develop a full benefit–cost analysis that

can aid in the assessment of future permitting decisions.

Methodological and technological advances allow better track-

ing and prediction of both oil spills and fishing fleet dynamics.

The use of fishery tracking systems has rapidly increased (Deng

et al., 2005) and the availability of large, detailed datasets on fish-

ing vessel movement and behaviour has provided the basis for a

tool-driven revolution in fishery analytics. Artificial neural net-

works, random forests, hidden Markov models, and a range of

other analytical tools have been successfully deployed within and

across data types to understand fishing behaviour at regional and

even global scales (Bastardie et al., 2010; Russo et al., 2011;

Lambert et al., 2012; Joo et al., 2013; O’Farrell et al., 2017;

Kroodsma et al., 2018), providing unprecedented insight to

coastal and deep-water fishery with ever-increasing accuracy and

precision.

Concurrently, advances in oil-transport simulations include

implementation of key processes such as biodegradation, oil-

partitioning, and evaporation into a three-dimensional

Lagrangian tracking framework, which considers elements such

as oceanic currents, droplet buoyancy, and wind drift (Barker,

2011; Le Hénaff et al., 2012; Paris et al., 2012, 2013; Boufadel

et al., 2014; North et al., 2015; Lindo-Atichati et al., 2016). Such

frameworks have successfully reconstructed various aspects in the

DWH oil spill, namely satellite footprint (Le Hénaff et al., 2012;

Olascoaga and Haller, 2012), shoreline contamination (Le Hénaff

et al., 2012; Boufadel et al., 2014), evaporation (De Gouw et al.,

2011), sedimentation (Paris et al., 2012; North et al., 2015), and

the formation of a deep plume (Paris et al., 2012). Oil-transport

models are increasingly used to estimate potential impacts of pos-

sible oil spills on the environment and economy (Nelson and

Grubesic, 2018a). Most of these efforts, however, are focused on

effects resulting from the direct contact of oil, considering habi-

tats and sediment types with variable oil-retainment characteris-

tics (Cai et al., 2015; Azevedo et al., 2017; Nelson and Grubesic,

2018a), and direct impacts on economic activities such as tourism

(Nelson and Grubesic, 2018b). However effects such as revenue

loss because of fishery closures are rarely considered in such

analyses.

Lastly, advances in social sciences introduced the social vulner-

ability indices (SOVIs; Cutter et al., 2003)—a quantitative mea-

sure of the vulnerability of different groups given their social and

economic attributes (Cutter et al., 2003). These indices allow a

robust evaluation of the impact of a disastrous event on a com-

munity such that more-vulnerable communities are expected to

suffer a greater impact compared with more-resilient communi-

ties (Schmidtlein et al., 2008). It is of policy concern not only that

oil spill impacts are distributed unequally among GoM counties

but also that counties may vary in their social vulnerability to en-

vironmental hazards (Cutter et al., 2003). The ability to identify

counties, which stand to lose larger proportions of their fishing

revenue and which also have higher social vulnerability would al-

low the pre-emptive development of policy instruments to miti-

gate hardship in the event of future oil spills. We use a

multimodal approach to demonstrate how the aforementioned

advances can be integrated into a spatially explicit framework to

predict the impact of future oil spills on fishery revenues

(Figure 1). First, we deploy a three-dimensional Lagrangian oil-

spill model to simulate two large spills, one each in the eastern

and western GoM. We use these simulations to define closed-area

boundaries based on toxic concentrations of polycyclic aromatic

hydrocarbons (PAH) in the water, and allow these boundaries to

change over time in response to the evolution of the plume.

Second, we use data on the movement and revenue of GoM com-

mercial reef-fish fishery vessels to estimate how compliance with

the closed areas would impact fishing revenues at the county

level, using a maximum loss scenario to locate the upper bound-

ary of economic impacts. Finally, we analyse our results to iden-

tify instances where socially vulnerable counties were also heavily

impacted by the loss of fishing revenue resulting from the

closures.

Figure 1. Multimodal spatially explicit quantitative approach
composed of oil-transport, commercial fishing analysis, and social
vulnerability components, and used to estimate the impact on
fishing revenue losses in the aftermath of simulated oil spills and
mapped to the vulnerability of the fishing communities.
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Methods
Overview
We employ a multidisciplinary approach to predict the potential

impact of large oil spills on GoM fishery-dependent counties by

coupling oil-transport modelling, commercial fishing analyses,

and SOVIs (Figure 1).

Oil-CMS: connectivity modelling system use for oil-spill
simulations
Our study implements the existing oil application (Paris et al.,

2012) of the connectivity modelling system (CMS; Paris et al.,

2013) to compute the transport and fate of the oil spilled in two

hypothetical scenarios (Table 1), with blowout characteristics

similar to DWH. DWH-like characteristics were applied because

the duration and extent of the DWH spill were large enough to

result in extensive fishery closures in the GoM.

The oil-CMS performs Lagrangian particle tracking of multi-

fractional oil droplets released at the trap-height, i.e. the height of

the first intrusion where the droplets in the buoyant jet flow lose

their initial buoyancy and become neutrally buoyant (Socolofsky

et al., 2011). Particle transport calculations consider three-dimen-

sional ocean currents, temperature, salinity, multi-fractional

droplet buoyancy, biodegradation, dissolution, sedimentation,

and surface oil evaporation. A unique fourth order Runge–Kutta

spatial and temporal integration scheme forms the basis for parti-

cle advection in the oil-CMS. Computation of the terminal veloc-

ity of a droplet is based on its density, size, and Reynolds

number, as well as on ambient conditions such as water tempera-

ture, salinity, density, and kinematic viscosity (Zheng et al.,

2003).

The model output is saved every 2 h, and includes oil droplets’

effective density, size, location, and depth. The CMS horizontal

grid spacing is 0.04 degrees and includes 20 vertical layers. The

oil-CMS applies a multi-fractional droplet approach in which

each droplet includes multiple hydrocarbon fractions (Perlin

et al., 2020). The biodegradation dynamics of the present study

are based on high-pressure experiments and apply fraction-

specific decay rates (Paris et al., 2012) to account for dissolution

processes where the droplet shrinks during the partitioning of oil

compounds in the water column (Jaggi et al., 2017). Post-

processing algorithms translate model outputs into oil concentra-

tions (Perlin et al., 2020).

Experimental setup
The total amount of spilled oil in the simulations is represented

in a release of 3000 oil droplets every 2 h for 90 d until 18 July

2010. The release depth is 1222 or 300 m above the Macondo well

depth, the estimated trap-height (Socolofsky et al., 2011). Initial

droplet diameters are drawn from a uniform distribution between

1 and 500 lm. Each droplet released by the CMS model contains

three pseudo-components (fractions) accounting for the differen-

tial oil density as follows: 10% light oil of 800 kg m�3 density,

75% intermediate oil of 840 kg m�3 density, and 15% heavy oil of

950 kg m�3 density. The biodegradation half-life rates for the

light, intermediate, and heavy fractions are set to 30, 40, and

180 h, respectively, based on laboratory and observational studies

(Hazen et al., 2010; Schedler et al., 2014; Lindo-Atichati et al.,

2016). Evaporation half-life rate is set to 250 h (De Gouw et al.,

2011) and horizontal diffusion is set to 10 m2 s�1 (Okubo, 1971).

Ocean hydrodynamic forcing for the present study uses daily

output from the Hybrid Coordinate Ocean Model (HYCOM;

Chassignet et al., 2003) for the GoM region on a 0.04 degree hori-

zontal grid, including 40 vertical levels spanning from the surface

to 5500 m. HYCOM model employs data assimilation using the

Navy Coupled Ocean Data Assimilation, which assimilates avail-

able satellite altimeter and sea surface temperature observations,

as well as available temperature and salinity profiles from moored

buoys and ARGO floats. HYCOM output variables used for CMS

simulations include horizontal and vertical velocity components,

temperature, and salinity.

The simulation includes parameterization of the effects of sur-

face wind drift (Le Hénaff et al., 2012). Windstress components

from the 0.5-degree Navy Operational Global Atmospheric

Prediction System are interpolated into HYCOM GoM 0.04 de-

gree grid, and 3% of their values are added to the top level ocean

velocity horizontal components taking into the account the wind-

stress rotation. The corrected ocean velocity fields are then imple-

mented in the oil-CMS.

Oil mass and concentration estimates from the oil-CMS
To obtain oil mass and concentrations from the oil-CMS model

output, information about the oil flow rate is needed. In a simpli-

fied case of the constant flow rate during the oil-spill event, a

given number of total droplets released in the oil-CMS simula-

tion, the estimated 7.3� 105 tonne of crude oil is represented by

the total of 3.132� 106 droplets. These values translate into the

233 kg of oil represented by a single oil droplet at each release

time in the oil-CMS model. Lastly, to obtain total petroleum

hydrocarbons (TPH), we multiply the mass by a factor of 0.97 as

TPH account for �97% of oil (Overton et al., 2016). We approxi-

mate the droplet size distribution using the binned approach,

with droplets in the same bin representing similar mass of oil per

droplet, based on a lognormal distribution. We further compute

the scaling factor (Sf) for each droplet as the ratio between the

current and initial masses. Oil mass at each output time is then

scaled to obtain effective oil mass at a given location, and

summed for all the droplets found at a given time-step in each

post-processing domain three-dimensional grid cell. The three-

dimensional post-processing domain is of 0.02-degree resolution,

with vertical layers of 0–1 m (surface layer), 2–20, 20–40,. . .,
2480–2500 m. After the oil mass is computed for a given droplet

and a given output time, the effective oil mass from the droplets

found in that grid cell at a given time are summed.

Concentrations are obtained by normalizing the total oil mass to

the mass of water in the corresponding grid box, producing

three-dimensional concentrations across time (Perlin et al.,

2020).

Spill scenarios
We simulate two spill scenarios (Table 1), one in the eastern and

one in the western GoM (E_GoM and W_GoM respectively) un-

der similar conditions to the DHW blowout. The spill scenarios

Table 1. Simulation details, which vary between the scenarios.

Scenario Location Leasing block Start date

E_GoM 27�0000N 85�1680W The elbow 20 April 2010
W_GoM 26�6600N 93�1900W Keathley canyon 20 April 2010
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are designed for alternative locations of a deep-sea blowout in the

GoM. The locations were chosen such that the water depth is

similar to that of the DWH accident, and thus the oil droplets are

released at the same trap-height depth of 1222 m. The E_GoM

site is located in the eastern part of the GoM close to the Florida

peninsula and over the continental shelf break, in the “the elbow”

leasing block—an area, which was recently proposed for oil ex-

ploration and production (U\.S\. Department of the Interior,

2018). The W_GoM site is located in the western part of the

GoM, over an area with less steep bathymetry gradients, within

the “Keathley canyon” leasing block, a petroleum-rich area in

which multiple parties have leased the rights to drill (Smith,

2010).

Toxicity computation for the oil-CMS and virtual fishery
closures
Toxicity computations for the oil-CMS are based on the recent

finding of the toxicity amplification because of the combined ef-

fect of PAH and ultraviolet radiation, phototoxicity (Lay et al.,

2015), with PAH becoming toxic to early life stages of marine

organisms from a concentration of PAH¼ 0.5 ppb at the surface

and PAH¼ 1 ppb in deeper waters (Deepwater Horizon Natural

Resource Damage Assessment Trustees, 2016). Another recently

discovered toxic pathway is cardiotoxicity, i.e. the adverse effect

of PAH on heart development and function in fish embryos and

larvae (Deepwater Horizon Natural Resource Damage

Assessment Trustees, 2016). For cardiotoxicity, the toxicity

threshold is PAH¼ 1 ppb as well (Deepwater Horizon Natural

Resource Damage Assessment Trustees, 2016). We apply a linear

regression to compute the PAH–TPH linear relationship from the

Gulf Science Data (GSD), producing the following regression

equations:

log10 TPHþ 1ð Þ ¼ 1:733 þ 1:0074

� log 10 PAHþ 1ð Þ for surface: (1)

log10 TPHþ 1ð Þ ¼ 1:58357 þ 0:85257

� log 10 PAHþ 1ð Þ for the water column:

(2)

More information about the toxicity computation is in the

Supplementary Section S1.

Daily closures are applied as a boundary of all grid cells that

contain toxic concentrations in the GoM (Figure 2) as computed

by the oil-CMS model. The cumulative closures for both scenar-

ios are determined as the boundary of all daily closures per sce-

nario. MATLAB R2017b is used for all spatial analyses.

Fisheries data analysis
Three fisheries datasets are used in the analysis, which is con-

ducted in R version 3.4.3 (R Foundation, 2017). First, we use a

positional and behavioural dataset that is gathered by the on-

board fishery observer programme. These observer data are

recorded on a subset of trips by the GoM reef-fish fleet, where in-

dependent on-board observers record the time and location when

fishing gears are deployed and recovered. Second, a vessel moni-

toring system (VMS) dataset provides positional information

with approximately hourly resolution. VMS equipment has been

mandated on all GoM commercial fishing vessels with a reef fish

licence since 2006, irrespective of vessel size. Finally, revenue,

gear type and county-of-landing data are collated from manda-

tory logbook records. Integration of the three datasets (Figure 3) is

outlined below.

Data processing
Vessels that are actively engaged in fishing display characteristic

movement patterns as they deploy and recover gears (Bastardie

et al., 2010). These movement patterns can be decomposed into

quantifiable components of a vessel track, such as velocities and

turning angles. The movement variables can then be combined

with additional exogenous variables such as depth at location and

time of day to create signature sets of variables from which fishing

activity can be identified in vessel tracks (O’Farrell et al., 2017).

First, VMS data are processed to calculate the relevant movement

metrics. The distances and turning angles of successive VMS legs

are calculated using the spherical trigonometry functions and in

the R-package, geosphere (Hijmans, 2016). These distances and

the VMS time intervals are then used to calculate velocity. Time

of day is extracted directly from the VMS signal. After processing,

the derived variables are used to classify the VMS records into ei-

ther fishing or non-fishing, using a random forest classifier that

had been trained to recognize fishing behaviour using the

ground-truthed fishery observer dataset. Full details of VMS data

processing and the random forest training and testing protocol

are described in O’Farrell et al. (2017).

Calculating lost revenue by vessel and by county
To estimate an upper bound on the economic impacts from the

spill, a maximum loss scenario is used whereby any fishing that

took place within the simulated closed areas is assumed to be

“lost.” This is a maximum loss, because we would expect that

these displaced vessels would have moved to areas outside the

closed areas to fish and thereby would mitigate some of the losses.

For each day of the simulated oil spill, the relevant toxic concen-

tration polygon(s) are intersected with the VMS fishing records

for that day using the R-packages sp (Bivand et al., 2013) and ras-

ter (Hijmans, 2017). Fishing locations that fell within the poly-

gons are identified, and lost fishing is quantified for each trip as

the proportion of VMS records that fell within the polygons rela-

tive to the total number of fishing records for that trip. The

reported revenue in the merged logbook dataset is then adjusted

accordingly. For instance, if 30% of the VMS fishing records for a

vessel on a given trip falls within the polygon(s), it is assumed

that 30% of the reported revenue is lost. Finally, losses are aggre-

gated at county level using the merged logbook dataset, which

records the county where each trip is landed. County shapefiles

are downloaded from the United States Census Bureau website

(2018) and imported to R using the package rgdal (Bivand et al.,

2017).

Fishing analyses
After merging the logbook and VMS datasets, 101 bottom long-

line trips and 222 bandit-reel trips are available (Table 2). There

is a considerable spatial overlap of fishing grounds between the

two fleets, which is to be expected considering that both target

reef fish, albeit of differing species. Bandit-reel vessels originate in

more than twice as many counties (N¼ 26) as bottom longline

vessels (N¼ 11; Table 1) and the number of bandit-reel vessels
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(N¼ 359) is an order of magnitude greater than the number of

bottom longline vessels (N¼ 38; Table 2).

Linking oil-spill economic impacts to social vulnerability
The SOVI (Cutter et al., 2003) provides a numerical social vulner-

ability score for each US County based on 29 variables derived

primarily from the US Census Bureau. The variables include

metrics of wealth, social status, gender, age, ethnicity, and health

insurance, among others. The dimensionality of the dataset is re-

duced to eight significant components using principal compo-

nents analysis, and the cardinalities of the components are then

adjusted so that higher SOVI scores indicate greater vulnerability.

We focus only on the counties that border the GoM.

To identify impacted counties in revenue losses and social vul-

nerability, we cross-reference the SOVI (2010–2014) scores for

(a) (b)

(c) (d)

Figure 2. Daily snapshots of a simulated oil spill for the eastern (E_GoM) and western (W_GoM) spill scenarios during (a, b) 5 May 2010; (c,
d) 29 June 2010. Polygons represent simulated fishery closures encompassing polycyclic aromatic hydrocarbons (PAH) concentrations higher
than 0.5 ppb at the surface (depth: 0–1 m) and 1 ppb at deeper waters.

Figure 3. Fisheries data analysis process.
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each county in our study with the predicted revenue losses result-

ing from the two spill scenarios for the two gear types. Revenues

and SOVI variables (V) were standardized for each impacted

county, i, relative to all fishing counties, k, for each combination

of a given spill (S) and fishing gear type (G1, G2):

Vi;G1jS ¼
Vi;G1

� lk;G1;G2

rk;G1;G2

; (3)

where lk;G1;G2
is the mean revenue or SOVI across all fishing

counties, k, and gear types, and rk;G1;G2
is the standard deviation.

The SOVI score is originally calculated as a relative measure of so-

cial vulnerability for a large number of counties, most of which

were not engaged in bandit or longline fishing during our study

period. Consequently, we standardize the SOVI score to express

the values relative only to counties in our study. A standardized

SOVI score of zero is the average score for the counties in our

study, and scores above or below zero respectively indicate coun-

ties that are above or below average vulnerability in our study.

Using this standardization, we can partition the counties into

four categories based on whether they lie above/below the means

for both SOVI and revenue. For example, a county could have

higher fishing revenues and at the same time be one of the most

socially vulnerable counties bordering the GoM.

Results
Commercial fishing data analysis indicates that bottom longline

fishing in the GoM is dominated by the Florida counties, and is

concentrated on the West Florida Shelf. In contrast, bandit-reel

fishing is more widespread across counties from all GoM states

(Figure 4), and the fishing activity in the Gulf is also more wide-

spread compared with bottom longline.

The Florida shelf spill (E_GoM) had a particularly large impact

on socially vulnerable counties, which engage in longline fishing,

with five impacted bottom longline counties (Figure 5, white tri-

angles) being either within or bordering the red quadrant of high-

est concern. At the other end of the spectrum, the Texas spill

(W_GoM) had a low impact on longlining counties, with only a

single impacted county of below average social vulnerability

(black triangle). For bandit-reel fishing the effect was milder, with

two socially vulnerable counties impacted in the E_GoM (white

circles), and one in the W_GoM (black circles).

Cumulative oil spill extents of the two scenarios reveal a large

spread covering more than half of the GoM waters (Figure 6).

Toxic concentrations of the E_GoM and W_GoM were limited,

covering the eastern and the northwestern areas of the GoM re-

spectively. In E_GoM, a considerable amount of oil entered the

Gulf Stream, transporting the oil northwards along the east

Florida shelf, whereas for W_GoM, oil did not enter the Gulf

Stream. The relative impact because of the fishery closures is evi-

dent across counties from most GoM states, mainly Florida for

E_GoM, and Texas for W_GoM (Figure 6). Relatively vulnerable

counties, which suffered high revenue loss are in south Texas and

central- and north-Florida (Figure 6, red shading). The effect on

the bandit-reel fishery is wider across counties compared with the

Bottom longline fishery, however most impacted counties are

characterized by either low revenue loss and low vulnerability

Table 2. Summary statistics of merged logbook and VMS datasets for two Gulf of Mexico reef-fish fleets during the simulated oil-spill fishery
closures.

Fleet
Number of
vessels

Number of VMS
records—fishing only

Number of VMS
records—totala

Number of
fishing trips

Number
of counties

Bottom longline 38 31 179 123 685 101 11
Bandit-reel 359 70 301 481 391 222 26
aIncludes VMS records classified as “in port” and “at sea but not fishing” (e.g. steaming).

Figure 4. Fishing activity in the Gulf of Mexico (GoM) during the simulated oil spills. Coloured heatmaps show the density of fishing activity
for bottom longline and bandit-reel. Greyscale heatmaps indicate the total number of trips made per county per fishery during the simulated
spill period, including trips that did not overlap with the simulated closures and would therefore not have been impacted. To maintain
confidentiality, fishing grid cells containing data from fewer than three vessels are not plotted. GoM states include Florida (FL), Alabama (AL),
Mississippi (MS), Louisiana (LA), and Texas (TX).
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(blue) or low revenue loss and high vulnerability (yellow).

Counties with high revenue loss and low vulnerability (magenta)

are in located in northern Texas and northern Florida.

Discussion
Our study demonstrates that coupling a three-dimensional oil-

spill model with fishery vessel movement data, and SOVIs permit

estimation of county level impacts for given oil-spill scenarios.

The E_GoM and W_GoM are realistic and relevant oil scenarios

as they are situated both in active and under-consideration leas-

ing blocks. We show that Florida counties will be affected by the

E_GoM and Texas counties will be mainly affected by the

W_GoM scenario, yet fishing counties from other GoM states are

at some risk of impact as the choice of fishing grounds is dy-

namic. This study provides a glimpse into how each county is

susceptible to each spill scenario (Figure 6), providing important

insights at the county management level, facilitating a better un-

derstanding of the risk associated with the possible spill scenarios.

Similarly, these data are valuable for the fishers themselves, allow-

ing them to anticipate and prepare their own firm-level contin-

gency plans for a possible major spill.

The implementation of high-resolution vessel tracking systems

such as VMSs and automatic identification system heralds a new

era in fishery management (Russo et al., 2011). Prior to these

systems, the spatial management of fishery was mostly limited to

self-reported data, which were assigned to coarse-scale manage-

ment zones (“statistical areas”), constraining their usefulness.

Modern tracking systems not only permit fishing vessel locations

to be pinpointed with GPS-level accuracy, but also permit vessel

activity to be inferred from movement and environmental varia-

bles (Bastardie et al., 2010). Deploying analytical tools such as

machine-learning algorithms and hidden Markov models have

delivered greatly increased accuracy over traditional approaches

such as speed filters (Joo et al., 2013; O’Farrell et al., 2017) and

even allows métiers to be inferred directly from vessel data (Russo

et al., 2011). Although further improvements in the data and ana-

lytical methods are necessary—and indeed under way—the qual-

ity of the outputs is now sufficient that integration with spatial

tools such as three-dimensional oil-spill models as well as with

datasets such as habitat maps can create flexible analytical frame-

works that hold great promise for fishery science and policy.

The 2010–2014 SOVI score we use in our manuscript is calcu-

lated from 29 variables, including per capita income and percent-

age of the population employed in extractive industries such as

fishing. Although we plot SOVI scores against fishing revenues

for impacted counties, we do not model either variable as a func-

tion of the other because measures of revenue would be included

in both the predictors and the response. Regardless of endogene-

ity concerns, however, any correlation between the SOVI score

and fishery revenue is likely to be small given that SOVI is calcu-

lated using numerous non-revenue variables (e.g. age, ethnicity,

gender). We formally confirm that no significant correlation

exists by calculating Pearson correlation coefficients for the SOVI

scores and bandit revenues (rho¼�0.02; p¼ 0.917) and for

SOVI scores and longline revenues (rho¼ 0.4; p¼ 0.223).

The SOVI score collapses complex, high-dimensional socio-

economic information into a tractable scalar quantity. Naturally,

there are drawbacks in doing so. Some workers have found the

scores are sensitive to the selection of variables and their repre-

sentation, as well as to the relative weighting of the variables used

in calculating the index (Jones and Andrey, 2007). The adaptabil-

ity of the methodology to contexts beyond the United States is

also questionable (Boruff and Cutter, 2007). However, in con-

ducting a formal sensitivity analysis on SOVI within its geo-

graphic context, Schmidtlein et al. (2008) found the index to be

mostly robust. SOVI has also been lauded for its approach to in-

tegrating theory, conceptualization, and variable selection (Adger

et al., 2005; Füssel, 2007). When applied in the geographical con-

text in which the index was developed, the index lends itself well

to mapping vulnerability across space (Cutter and Finch, 2008),

as we have done in our study.

We chose to use the bandit-reel and longline reef-fish fishery

for a number of reasons. First, both fishery had the VMS system

installed for a number of years prior to our study period, amelio-

rating concerns about data quality problems during system im-

plementation and mitigating any short-term behavioural changes

induced by the recent installation of any monitoring system.

Second, bandit-reel and longline are two of the dominant gear

types in the GoM, comprising relatively large fleets and increasing

the number of vessels that would have been fishing during our

simulated study period. And third, the bandit-reel and longline

reef-fish fishery employ a large number of individuals in the

coastal counties of the GoM, and are thus part of a tightly cou-

pled social-ecological system that may be considered particularly

vulnerable to disturbances such as oil spills.

Figure 5. Fishing revenue losses vs. social vulnerability index (SOVI)
scores for counties impacted by the two oil-spill scenarios. Values
are expressed in standard deviations, with zero representing the
average for all fishing counties, impacted or not. Higher SOVI scores
indicate greater social vulnerability to environmental hazards.
Marker shapes show gear types (triangles, bottom longline; circles,
bandit-reel) and shading indicates spill scenario (white, E_GoM;
black, W_GoM). Counties falling within the blue (lower left)
quadrant are those that suffered relatively little revenue losses and
are of low social vulnerability, and therefore may be considered of
the lowest concern. Counties in the red (upper right) quadrant are
those that suffered relatively high revenue losses and are also of high
social vulnerability, and are thus of the highest concern. Yellow and
magenta quadrants represent high SOVI þ low revenue losses and
low SOVI þ high revenue losses, respectively.
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The spills simulated here represent relevant scenarios in areas,

which include active leases (Smith, 2010; U\.S\. Department of

the Interior, 2018; Li and Johnson, 2019). These locations provide

a good spatial geographical coverage for the US region of the

GoM (Figure 6). The similarity to the DWH in spill characteris-

tics provides a vivid point of reference as for the possible out-

comes of such spills, as well as representing ultra-deep blowout

scenarios, which are difficult to contain and are therefore suscep-

tible for longer spill durations. Future work will explore hypo-

thetical spills with variable characteristics including other

locations, different depths, spill durations, and flow-rates.

Our framework is also relevant of marine spatial planning

(MSP; Douvere, 2008), an integrated management approach,

which emerged in response to increasing pressure on marine nat-

ural resources (Millennium Ecosystem Assessment, 2005). MSP

aims to balance stakeholder activities, which spatially interact

with each other and with the marine environment, e.g. fishery,

offshore petroleum industry, and shipping. This is especially rele-

vant in environments such as the GoM, in which highly produc-

tive fishery and oil extraction infrastructure often overlap,

resulting in immense anthropogenic pressure, with millions of

people exploiting its resources for livelihood, energy, and nutri-

tion (Yá~nez-Arancibia and Day, 2004). By predicting the spatial

distribution of water-borne pollutants and the socio-economic

consequences for fishery-dependent coastal populations, our

framework can provide valuable inputs to a regional GoM MSP

process within frameworks such as the Gulf of Mexico Alliance,

which promotes the use of ecosystem-based management at a re-

gional level, considering ecological, social, and economic short-

and long-term objectives (Carollo and Reed, 2010). Our frame-

work would allow stakeholders to estimate the socio-economic

impacts of an oil spill at a given location, varying parameters

such as the magnitude or duration of the spill. The various out-

puts can be used as impact “visualizations” during scenario plan-

ning, helping stakeholders to make informed decisions

considering the consequences of allowing oil wells to be posi-

tioned at various locations.

Our study synthesizes physical, behavioural, and socio-

economic data from multiple sources to understand how oil spills

could affect fishing-dependent communities in the GoM. We

quantify and evaluate our results in a spatial context, providing a

useful framework not only for federal policy-makers, but also for

state, county, and firm-level management. Examining the spa-

tially explicit impacts revealed by this framework can facilitate ef-

ficient allocation of resources to impacted counties in case of a

major oil spill and in planning for further oil extraction in the

Figure 6. Relative impact of the simulated oil spills on the Gulf of Mexico (GoM) counties given fishing revenue loss and social vulnerability
indices (SOVIs) during the simulated spill period. “þ” and “�” represent above and below the mean value, with colours similar to Figure 5.
E_GoM and W_GoM are simulated oil spills on the east and west GoM of the same magnitude as the Deepwater Horizon spill. The location
of the simulated wellhead is marked with “x.” Black dotted polygons are the boundary of all daily closures per scenario. Fishing gear categories
include bandit-reel and bottom longline. GoM states include Florida (FL), Alabama (AL), Mississippi (MS), Louisiana (LA), and Texas (TX).
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GoM. Future work includes incorporation of finer elements

within counties and communities, including a more granular spa-

tial analysis of the level of dependence on fishery (Jacob et al.,

2010), as well as integrating spatially explicit discrete-choice

models to improve predictions of fishing displacement by oil

spills (Berman, 2006).

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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