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Abstract 11 

The U.S. Magnuson-Stevens Fishery Conservation and Management Act requires management 12 
benchmarks to be defined in relation to maximum sustainable yield (MSY). However, supporting 13 
scientific information often lags behind this management expectation. This problem is 14 
epitomized by uncertainty about stock-recruitment steepness, which directly affects delineation 15 
of MSY-related reference points. We demonstrate a solution to the problem of selecting fishing 16 
mortality proxies under steepness uncertainty by coupling simulation modeling with the use of 17 
Bayesian belief networks. This approach is applied to 17 stocks of the southeastern US and US 18 
Caribbean that collectively represent an assemblage of gonochoristic reef fishes and a second 19 
assemblage of hermaphroditic reef fishes (families: Lutjanidae, Balistidae, Carangidae, 20 
Malacanthidae, Serranidae). Degree of belief is assigned to stock-recruitment steepness in the 21 
form of a prior probability distribution. We then identify proxy fishing mortality reference points 22 
based on spawning potential ratios (SPRs) that have the strongest probabilistic basis for 23 
achieving MSY-level catches for each of the two reef fish assemblages. Delineation of reference 24 
points occurs without reliance on any specific point estimate of steepness but instead reflects 25 
steepness uncertainty in the decision of selecting management reference points. 26 
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Introduction  38 

Fishery legislation such as the U.S. Magnuson-Stevens Fishery Conservation and 39 

Management Act (MSFCA) has been put in place to ensure that stocks are managed at levels that 40 

will maximize social, economic, and ecological benefits of exploited species over the long term 41 

(NOAA, 2007). A key tenet of such legislation is to define an “optimum” stock level where 42 

extractive uses can be maximized, that is then maintained through time (NSG, 2016). In the case 43 

of the MSFCA, legislation requires the definition of management benchmarks such as maximum 44 

sustainable yield (MSY). However, the definition of MSY, and maintenance of a population 45 

toward this level, requires knowledge of stock productivity – which is notoriously challenging to 46 

measure. Stock-recruitment relationships strongly determine the theoretical stock size (i.e., 47 

BMSY) at which surplus production is maximized (Brooks et al., 2010; Mangel et al., 2010; Punt 48 

et al., 2014). Delineation of reference points like BMSY also depends on natural mortality rates 49 

and fishery selectivity (Brodziak, 2002; Mangel et al., 2013). In developing stock rebuilding 50 

plans, estimates of future numbers of recruits are required, which then help to determine 51 

appropriate fishing mortality rates to ensure that rebuilding occurs within an expected time frame 52 

(Punt and Methot, 2005). Because of the typically noisy relationship between spawning stock 53 

and recruitment, and due to the lack of direct estimates of natural mortality and selectivity, the 54 

availability of scientific information for many species has lagged behind the informational 55 

requirements necessary for management.   56 

Fishery management for stocks belonging to reef fish complexes of the southeastern US and 57 

US Caribbean regions often face circumstances where relationships between spawning biomass 58 

and recruitment are highly uncertain. While it is possible to estimate parameters of stock-59 

recruitment relationships during quantitative stock assessment, and this has been attempted for 60 

some of the stocks that we included in this study, data available to stock assessment models 61 
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typically prevent reliable estimation of stock-recruitment steepness (Lee et al., 2012; SEDAR, 62 

2014, 2012). The steepness parameter aids in describing the shape of stock-recruitment 63 

relationships and has an important influence on determining the stock size where surplus 64 

production is maximized (Fig. 1). Steepness uncertainty accordingly creates challenges in 65 

selecting optimality-based reference points like MSY, the rate of fishing that produces MSY 66 

(FMSY), and the spawning stock biomass level that is associated with production of MSY (BMSY). 67 

But despite challenges in establishing MSY-based reference points, reef fish fisheries are 68 

typically managed using regulatory frameworks based on these types of reference points, 69 

notwithstanding additional economic and ecosystem-based management objectives (CFMC, 70 

1985; GMFMC, 1984; NOAA, 2007; SAFMC, 1983). As a consequence of a lack of direct 71 

information on steepness, it is necessary to use reference point proxies for achievement of MSY, 72 

such as the fishing mortality that produces a spawning potential ratio (SPR) of x% of unfished 73 

SPR, which is sometimes thought of as a proxy for SPR at FMSY. However, selection of proxy 74 

reference points implies an assumption about the effect of steepness on stock productivity. In 75 

many cases, the use of assumed reference point proxies remains untested and can potentially 76 

affect achievement of fishery objectives.      77 

Simulations were carried out to identify management benchmarks that had the highest 78 

probabilities of achieving optimality-based fishery objectives, given assignment of prior 79 

probability distributions to steepness as an expression of steepness uncertainty. Our objective 80 

was to provide guidance on selecting proxy fishing mortality reference points without 81 

dependence on an accurate estimate of steepness of the simulated stock. This objective was 82 

achieved through simulating the long-term or end-state performance expectations of alternative 83 

fishing mortality proxies against stock specified with a variety of different steepness levels 84 
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specified in simulated stock dynamics. Performance outcomes were marginalized across 85 

simulations with different steepness values. Marginal performance of a fishing mortality proxy 86 

refers to the process of integration across simulations that differed in terms of “true simulated” 87 

steepness using an approach known as Bayesian networks and by assigning a prior probability 88 

distribution to steepness. Bayesian Networks (BNs) have previously been used to support 89 

resource management decision-making (Marcot et al., 2001; Parkes et al., 2016; Underwood et 90 

al., 2016). We applied this approach to a collection of 17 life histories from reef-associated 91 

stocks comprising gonochoristic species (families: Balistidae, Carangidae, Lutjanidae, and 92 

Malacanthidae), and hermaphroditic groupers (family: Serranidae). Our approach enables policy 93 

decisions to move past the speculation and conjecture that is sometimes present in specifying 94 

fishing mortality reference points when steepness is uncertain.  95 

 96 

Methods 97 

The study involved four steps. First, stock dynamics equations and input values for life 98 

history parameter were specified for each fish stock. Second, SPR-based fishing mortality 99 

proxies were specified. Third, the long-term or end-state performance of these proxies was 100 

simulated under different scenarios about stock-recruitment steepness. Fourth, BNs were used to 101 

synthesize simulation outcomes and highlight how weighted performance outcomes based on 102 

prior probability distributions for steepness can support reference point selection in the face of 103 

recruitment uncertainty. 104 

Simulating stock dynamics 105 

Selected reef fish stocks were judged to have sufficiently reliable and detailed life history 106 

information based on being previously subjected to peer-reviewed quantitative stock assessment 107 
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(Table 1). A few distinct stocks of the same species were included based on life history variation 108 

in growth and natural mortality. Population dynamics models were age-structured and functioned 109 

on an annual time step. Within each annual time step, growth occurred first, followed by 110 

reproduction, and then by total mortality (i.e., natural mortality plus fishing mortality). Age-0 or 111 

age-1 recruitment (depending on decisions made during stock assessments) followed a re-112 

parameterization of the Beverton-Holt stock recruitment relationship based on steepness: 113 

( ) ( ) ( )( )220

0

0.8 exp Normal 0, ,20.2 1 0.2
t

t
t

R hBR
B h h B

σσ
 

= −  − + − 
  (1) 114 

where t is the annual time step, Rt is recruits in numbers; Bt is a measure of spawning biomass; 115 

R0 is unfished recruits, h is steepness, and σ is standard deviation of lognormal recruitment 116 

deviates. Steepness describes the fraction of unfished recruitment when spawning biomass has 117 

declined to 20% of its unfished level (Beverton and Holt, 1957; Mace and Doonan, 1988). 118 

Lognormal recruitment deviations were specified with a standard deviation of 0.6, which is a 119 

typical assumption for stochastic recruitment variation (Beddington and Cooke, 1983). Growth 120 

in length (L) followed a von Bertalanffy function ( )( )( )( )01 expageL L K age t∞= − − − , with 121 

Brody coefficient K, asymptotic length L∞, and intercept parameter t0, and length-whole weight 122 

conversion followed an exponential function ( )age ageW Lβα= , with parameters α and β. For each 123 

stock, natural mortality was an inverse function of length and was scaled to a specified average 124 

lifetime rate based on empirical longevity observations (Hoenig, 1983; Then et al., 2015). 125 

Maturity ogives were available for each stock and reproductive output was specified as either 126 

eggs-per-female at age, where this information was available from the actual stock assessments, 127 

or as spawning weight-at-age.  128 
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Simulation design 129 

Simulated evaluation of fishing mortality proxy reference points was carried out as a factorial 130 

combination of stock types (two assemblages: 10 gonochoristic stocks and 7 hermaphroditic 131 

stocks), steepness (6 levels), and fishing mortality proxy (4). Stock dynamics were simulated at 132 

six discrete steepness levels: 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Fishing mortality proxies were 133 

FSPR30%, FSPR40%, FSPR50%, and FSPR60%. Per-recruit analysis based on the age-structured 134 

population dynamics (described above, but excluding the stock-recruitment function, as 135 

recruitment was constant in per-recruit analysis) was used for each stock to identify 136 

corresponding fishing mortalities that produced SPRs of x% of unfished SPR. To enable 137 

reasonable comparability of HCR performance across stocks, fishery selectivity was specified as 138 

knife-edge at the age coinciding with 50% maturity (Table 2). Given a fishing mortality rate F, 139 

and vulnerable biomass, Bv, calculation of total allowable catch (TAC; reflecting the OFL in 140 

MSFCA terminology) used at each annual time step to determine removals by the fishery: 141 

( )( )lim
lim

lim

1 exp .v
FTAC F M B

F M
= − − −

+
  (2) 142 

Prior to simulation runs, 1,000 time series of recruitment deviations were generated, which were 143 

then applied in parallel to each of the factorial combinations; this prevented performance 144 

differences from being attributed to chance differences in recruitment variation (Punt et al., 145 

2016). 146 

Performance measures were calculated by determining “true simulated” MSY-based 147 

reference points for each stock and steepness combination. These “true” MSY-based reference 148 

points were calculated using the age-structured population dynamics (described above) and with 149 

knife-edge selectivity coinciding with 50% maturity. Long-term performance was obtained by 150 
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simulating each HCR for a duration corresponding to four times the maximum lifespan of each 151 

stock. After ensuring that stable end-state dynamics were produced for all life history types, 152 

average catch and biomass was estimated for the final 25-year duration of each simulation run. 153 

The factorial design (stock by steepness by fishing mortality proxy) facilitated the subsequent 154 

use of BNs in producing probability-weighted performance outcomes, but also influenced how 155 

performance measures were required to be summarized. Each of 1,000 performance outcomes 156 

pertaining to a given stock, steepness, and fishing mortality proxy combination were calculated 157 

in relation to “true simulated” MSY and BMSY. Catches were divided by MSY and were binned 158 

into discrete performance categories of: 0 to <0.4, 0.4 to <0.8, 0.8 to <1.2, 1.2 to <1.6, 1.6 to 159 

<2.0, and 2.0 to <2.4. Likewise, biomasses were divided by BMSY and were binned into discrete 160 

performance categories between 0 and 4.8 based on an interval size of 0.4. Binning of 161 

performance outcomes was required to populate node probability tables, which are used in 162 

constructing BNs. These node probability tables were constructed separately for each 163 

performance measure and fishing mortality proxy. 164 

Probability weighted performance measures 165 

Performance of a fishing mortality proxy is conditional on steepness specified in a given 166 

simulation scenario. Consequently, a more desirable modeling outcome would be to generate 167 

marginal performance (or unconditional performance), which integrates performance for a 168 

fishing mortality proxy across plausible steepness values and life histories within a fish 169 

assemblage. Using BNs, posterior probability weighted performance outcomes were based on 170 

simulation outcomes and prior probability weightings that were assigned to steepness levels used 171 

in simulation scenarios (i.e., 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9). Three different priors were specified 172 

to represent alternative viewpoints about stock-recruitment steepness: ‘certain’, where  a non-173 
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zero weighting was assigned to only one of the steepness levels; ‘less certain’, where discrete 174 

prior probabilities for each steepness level were calculated based on an informative beta prior 175 

from a previous meta-analysis (Shertzer and Conn, 2012); and, ‘least certain’ using a discrete 176 

uniform prior. In the ‘certain’ case, a prior probability of one was assigned to steepness of 0.8, 177 

which is close to the mode of 0.84 from the informative beta prior of Shertzer and Conn (2012). 178 

Although steepness is a continuous parameter, discrete values were used in our simulation runs 179 

because in the authors recent experiences with data-limited MSEs in the US Caribbean and Gulf 180 

of Mexico we have found that highly integrative approaches (those which typically integrate 181 

across multiple parameters) are not easily interpretable and can sometimes complicate decision-182 

making (see Butterworth et al., 2010 for further discussion). While BNs can be used to integrate 183 

across a continuous parameter, we focused on the clarity that constructing BNs based on a few 184 

discrete hypotheses can bring to policy discussions. 185 

Marginalization produced unconditional performance, which was calculated according to 186 

probability rules. For example, ( ),P h θ  is the joint probability distribution of stock-recruitment 187 

steepness, h, and θ , which represents the discrete categories of any given performance measure. 188 

Because probabilistic outcomes associated with θ  are conditional on steepness, the fundamental 189 

rule of conditional probability applies: 190 

( ) ( ) ( ), | ,P h P h P hθ θ= ×   (3) 191 

where ( )P h  is prior probability of h and ( )|P hθ  is performance conditional on the specified 192 

steepness level. Marginalization across steepness levels, i, for a given level of jθ  is calculated: 193 

( ) ( ) ( )| .j j i i
i

P P h P hθ θ= ×∑   (4) 194 
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Probability distributions, θ , are the child nodes of the BNs that we present herein. The resulting 195 

analysis was used to produce separate marginal outcomes for each performance measures, 196 

fishing mortality proxy, and for two fish assemblages: gonochoristic and hermaphroditic stocks. 197 

In integrating performance across a fish assemblage, each stock within the assemblage was given 198 

equal weighting. Computations of BNs were carried out using the software AgenaRisk (Fenton 199 

and Neil, 2012). 200 

 201 

Results  202 

For 17 simulated reef fish life histories, “true simulated” reference points of BMSY/B0 and 203 

SPR associated the long-term achievement of MSY were between 0.1 and 0.5 and between 0.1 204 

and 0.7, respectively, which of course depended on specified steepness level (Fig. 2). For 205 

gonochoristic reef fishes, marginal performance outcomes based on the prior distribution 206 

provided by Shertzer and Conn (2012) resulted in F40%SPR having the greatest probability mass 207 

centered around long-term achievement of MSY while maintaining also biomass in proximity to 208 

BMSY (Figs. 3B & 4B). For the assemblage of hermaphroditic reef fishes, F50%SPR had the greatest 209 

probability mass centered around long-term achievement of MSY while also maintaining 210 

biomass in proximity to BMSY. In the case of the ‘least certain’ uniform prior for steepness, 211 

greater weight is given to low steepness values, and thus more conservative fishing mortality 212 

proxies were required to achieve MSY-based fishery objectives (Figs. 3C & 4C). Conversely, 213 

from a viewpoint of certainty in selecting a point-estimate for steepness of 0.8, probabilities of 214 

achieving MSY-based reference points were most centered around F30%SPR for gonochoristic 215 

stocks and F40%SPR for hermaphroditic stocks (Figs. 3A & 4A). 216 

 217 
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Discussion 218 

 An inability of stock assessment models to generate reliable estimates of steepness, often a 219 

result of existing data limitations such as lack of contrast in available time series, can prevent the 220 

determination of MSY benchmarks for reef fish stocks (e.g., SEDAR, 2011, 2009). As a result, 221 

SPR-based reference points are often adopted and decisions regarding appropriate proxy values 222 

can vary by life history characteristics. Currently, fishing mortality rates are implemented for 223 

Gulf of Mexico red snapper based on a SPR of 26% (SEDAR, 2014), in contrast to the more 224 

conservative SPR of 50% used for the long-lived hermaphroditic goliath grouper in the southeast 225 

US (SEDAR, 2016a). The most common proxy used for defining fishing mortality rates for reef 226 

fishes in southeast US is a SPR of 30%. Our simulations suggest that achieving MSY-based 227 

performance outcomes is commensurate with F40%SPR for gonochoristic reef fishes and F50%SPR 228 

for hermaphroditic reef fishes. Notably, these findings are dependent on fishery selectivity being 229 

specified at age coinciding with 50% maturity, whereas other selectivity assumptions could lead 230 

to preference for other HCRs (Table 2). Brooks et al. (2010) suggested that a SPR of 30% would 231 

only be appropriate for very resilient stocks and reinforced the importance of selecting a level of 232 

SPR based on life history characteristics. Our results support this conclusion on the basis that a 233 

SPR of 30% was most strongly supported in simulations relying on a high steepness value (i.e., 234 

the ‘certain’ steepness prior of 0.8 used in Figs. 4 & 5). However, fishing mortality proxies based 235 

on SPR 40% or SPR 50% provided the strongest basis for achieving MSY-based reference points 236 

when the possibility of stocks having low steepness values was acknowledged in specifying prior 237 

probability distributions.   238 

 Our analysis contributes guidance to data-limited HCR design, as it pertains to reef fish 239 

management complexes of the Gulf of Mexico, South Atlantic, and Caribbean regions. Greater 240 
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than 70% of all stocks (across a variety of life history types including pelagic and demersal 241 

stocks) in the US South Atlantic and Gulf of Mexico are considered data-limited, whereas in the 242 

US Caribbean all 179 stocks are data-limited and more than half of the 179 stocks of the US 243 

Caribbean lack rigorous management strategies (Anon., 2013; Berkson and Thorson, 2015; 244 

Newman et al., 2015; SEDAR, 2016b, 2016c). The manner in which we approached HCR design 245 

in the absence of certainty about stock productivity can be viewed as an example of coping with 246 

policy-driven mandates that sometimes outpace information availability.  247 

 248 
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Figure captions 418 

Figure 1. (A) Examples of two Beverton-Holt stock-recruitment relationships with different 419 
steepness values. (B) Stock-recruitment steepness influences the theoretical stock size (i.e., 420 
BMSY) at which surplus production is maximized. Solid dots denote maximum sustainable yield, 421 
dashed lines are calculated using steepness of 0.8 and solid lines are calculated using a steepness 422 
of 0.5.  423 

Figure 3. Simulated relationships between steepness and BMSY/B0 (A, C & E) and between 424 
steepness and SPR-at-MSY (B, D & F) for gonochoristic and hermaphroditic reef fish stocks. 425 

Figure 4. Probability weighted long-term biomass performance (as biomass relative to BMSY) for 426 
four SPR-based fishing mortality proxies. Histograms illustrate steepness prior probability 427 
distributions, which are described as: (A) certain, using a point-estimate of 0.8; (B) less-certain, 428 
using an informative prior from meta-analysis of demersal fish stocks (Shertzer and Conn, 2012), 429 
and (C) least-certain, using a diffuse prior bound between 0.4 and 0.9. 430 

Figure 5. Probability weighted long-term catch performance (as catch relative to MSY) for four 431 
SPR-based fishing mortality proxies. Histograms illustrate steepness prior probability 432 
distributions, which are described as: (A) certain, using a point-estimate of 0.8; (B) less-certain, 433 
using an informative prior from meta-analysis of demersal fish stocks (Shertzer and Conn, 2012), 434 
and (C) least-certain, using a diffuse prior bound between 0.4 and 0.9. 435 

 436 
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Table 1. Life histories of reef fish stocks included in simulation testing. K and L∞  are von 
Bertalanffy growth parameters, Mave is average lifetime natural mortality (year-1), Max age is 
observed maximum age, GOM is Gulf of Mexico, SATL is South Atlantic, STT is Saint Thomas, 
US Virgin Islands, and PR is Puerto Rico. 

Scientific name Common name K 
yr-1 

L∞

mm 

Max 
age 

Mave 

yr-1 

SEDAR 
# 

Gonochoristic assemblage       
Lutjanus analis Mutton snapper (GOM) 0.16 861 40 0.11 15 
Lutjanus campechanus Red snapper (GOM) 0.19 856 48 0.09 31 
Lutjanus campechanus Red snapper (SATL) 0.24 902 58 0.08 24 
Ocyurus chrysurus Yellowtail snapper (SATL & GOM) 0.13 618 23 0.19 27 
Rhomboplites aurorubens Vermilion snapper (SATL) 0.12 506 19 0.22 17 
Lopholatilus chamaeleonticeps Tilefish (GOM) 0.13 830 30 0.14 22 
Lopholatilus chamaeleonticeps Tilefish (SATL) 0.19 825 40 0.10 25 
Seriola dumerili Greater amberjack (GOM) 0.17 1436 15 0.28 33 
Balistes capriscus Gray triggerfish (GOM) 0.14 590 15 0.27 43 
Caulolatilus microps Blueline tilefish (SATL) 0.19 739 43 0.10 50 
       
Hermaphroditic assemblage       
Epinephelus morio Red grouper (GOM) 0.12 827 29 0.14 42 
Epinephelus morio Red grouper (SATL) 0.21 848 26 0.14 19 
Mycteroperca bonaci Black grouper (GOM & SATL) 0.14 1334 33 0.14 19 
Mycteroperca microlepis Gag grouper (GOM) 0.13 1277 31 0.13 33 
Hyporthodus niveatus Snowy grouper (SATL) 0.09 1065 35 0.12 36 
Epinephelus guttatus Red hind (STT) 0.07 601 18 0.25 35 
Epinephelus guttatus Red hind (PR) 0.10 514 17 0.26 35 

*Southeast Data, Assessment, and Review (SEDAR) stock assessments can be accessed at 
www.sedarweb.org. 
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Table 2. Summary of age and length at 50% maturity (A50 & L50, respectively) used in 
simulations and current regulatory minimum harvest size for federal waters. L50 was also used 
in simulation runs to designate knife-edge selection by the fishery. GOM is Gulf of Mexico, 
SATL is South Atlantic, STT is Saint Thomas, US Virgin Islands, and PR is Puerto Rico, TL is 
total length and FL is fork length. 

Common name A50 L50 Federal commercial 
regulatory size limit 

    
Mutton snapper (GOM) 3 433 mm TL 406 mm TL 
Red snapper (GOM) 2 315 mm TL 330 mm TL 
Red snapper (SATL) 2 348 mm FL - 
Yellowtail snapper (SATL & GOM) 2 305 mm TL 305 mm TL (GOM) 
Vermilion snapper (SATL) 1 211 mm TL 305 TL 
Tilefish (GOM) 2 345 mm TL - 
Tilefish (SATL) 3 399 mm TL - 
Greater amberjack (GOM) 4 832 mm FL 914 mm FL 
Gray triggerfish (GOM) 1 183 mm FL 356 mm FL 
Blueline tilefish (SATL) 3 445 mm TL - 
    
    
Red grouper (GOM) 3 328 mm TL 457 mm TL 
Red grouper (SATL) 3 459 mm TL 508 mm TL 
Black grouper (GOM & SATL) 7 904 mm TL 610 mm TL 
Gag grouper (GOM) 4 605 mm TL 559 mm TL 
Snowy grouper (SATL) 5 557 mm TL - 
Red hind (STT) 3 251 mm FL - 
Red hind (PR) 3 232 mm FL - 

*Southeast Data, Assessment, and Review (SEDAR) stock assessments can be accessed at 
www.sedarweb.org. 
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