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ABSTRACT.—In data-limited fisheries, making informed 
management decisions based on scientific advice is 
challenging. Here, we evaluate a multi-indicator adaptive 
management framework (AMF) that allows dynamic 
responses to changing environmental, socioeconomic, and 
fishing conditions. Using stakeholder-defined goals as a 
foundation for specifying performance metrics, we employ 
management strategy evaluation (MSE) to explore the 
performance of the AMF relative to prescriptive alternatives 
that are sometimes used in data-limited situations. We 
conduct simulations involving the two most economically-
important fisheries in Belize, spiny lobster, Panulirus argus 
(Latreille, 1804), and queen conch, Strombus gigas (Linnaeus, 
1758). Spiny lobster fishery simulations demonstrate that 
when relatively stable catches have historically persisted, 
an AMF can help to ensure that stable catches continue to 
persist into the foreseeable future when faced with factors 
such as increased entry to the fishery or environmentally-
induced recruitment fluctuations. The queen conch fishery 
simulations demonstrate that optimizing economic 
performance is complicated without stock status indicators 
and depends greatly upon the current, yet typically unknown, 
state of the resource. Since our indicator-based approach 
could not provide direct information about resource status in 
relation to management reference points such as maximum 
sustainable yield, economic objectives could not be achieved. 
Nevertheless, implementing the AMF served as a beneficial 
control against stock collapse and could function well as 
an interim fishery policy during which sufficient fishery 
data could be collected to inform population modeling and 
quantitative stock assessment.
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Fishery management decisions aimed at achieving long-term yields are often in-
formed by quantitative stock assessments (Mace 1994, Walters and Martell 2004). 
However, >80% of global catches occur in fisheries that lack the necessary data, re-
sources, and infrastructure to conduct such assessments (Costello et al. 2012). There 
are a variety of data-limited methods that enable quantitative metrics of fishery status 
to be compared against management reference points. For instance, total mortality 
estimates can be made from length frequency data and compared to per-recruit-
based fishing mortality reference points (Ault et al. 2005, Gedamke and Hoenig 
2006, Wayte and Klaer 2010, Hordyk et al. 2014). Simplified models of population 
dynamics serve a similar purpose (MacCall 2009, Dick and MacCall 2011, Martell 
and Froese 2012). However, underlying many data-limited approaches is an assumed 
mathematical model of fish population dynamics, from which data-limited metrics 
are derived. While it is often impractical to expect these underlying modeling as-
sumptions to be vetted prior to application in data-limited circumstances, inaccu-
rate metrics can be produced when implicit assumptions are violated (Carruthers et 
al. 2014, Hordyk et al. 2015).

As an alternative, indicator-based approaches can be used to make relative adjust-
ments to total allowable catches (TACs) in data-limited situations. Indicator-based 
approaches generally do not depend upon estimates of stock abundance that are typi-
cally obtained from stock assessment. Thus, exploitation is not controlled by deriv-
ing total allowable catches (TACs) from an estimate of stock abundance and a target 
exploitation rate, as may be the case where stock assessments are performed. Instead, 
indicator-based approaches use harvest control rules (HCRs) to provide guidance 
on future exploitation through relative adjustments to previous TACs (Apostolaki 
and Hillary 2009). In the context of indicator-based fisheries management, a HCR 
is a pre-determined process that connects measured values of various indicators to 
regulatory tactics for controlling catches. Indicator-based HCRs have been intro-
duced to avoid problems associated with uncertainty in results of stock assessments 
and in instances where the reliability of catch histories has been called into question 
(Hilborn et al. 2002, Apostolaki and Hillary 2009, Mesnil et al. 2009). The tracta-
bility of indicator-based HCRs has generated interest in comparisons against other 
approaches that rely on more complex stock assessment procedures (Geromont and 
Butterworth 2015a).

Indicator-based HCRs have been developed for North Atlantic and Australian 
fisheries (Pomarede et al. 2010, Little et al. 2011, Cook 2013) and have been pro-
posed for coastal Pacific fishery management in conjunction with the use of marine 
reserves (Wilson et al. 2010, Babcock and MacCall 2011, McGilliard et al. 2011). But 
our interest in indicator-based approaches stems principally from their modest data 
requirements (Carruthers et al. 2015, Geromont and Butterworth 2015b), and from 
their potential as flexible and adaptive fishery controls for stocks that may otherwise 
not be subject to quantitative stock assessment. In the present study, we present a 
simulated management strategy evaluation of an indicator-based approach aimed at 
addressing management concerns about increased entry to fisheries that have his-
torically produced stable catches without reliance on TACs. Our simulations are rep-
resentative of the spiny lobster, Panulirus argus (Latreille, 1804), and queen conch, 
Strombus gigas (Linnaeus, 1758), fisheries of Belize and reflect the ongoing need for 
indicator-based approaches for management of tropical fisheries, and in particular, 
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for invertebrate fisheries that have experienced increased fishing effort in recent de-
cades (FAO 2001, Anderson et al. 2011).

The Belize Fisheries Department, which is recognized as a global leader in marine 
conservation, along with its non-governmental partners, is exploring adaptive deci-
sion-making that draws upon decades of research, managed access programs, and 
indicator-based HCRs. Expert consensus in identifying suites of indicators of stock 
trajectories has taken place in this region; however, practical management concerns 
have emerged as to how to develop HCRs that rely directly on indicator-based data 
inputs. Furthermore, HCRs are needed that achieve management objectives under 
circumstances where stock productivity is uncertain, catch histories do not exist, 
or where environmental conditions and fisher behavior are highly variable. Here, 
we report on the process of developing HCRs that link indicators to the recursive 
adjustment of TACs.

HCRs were evaluated through simulated management strategy evaluation (MSE). 
MSE simulates connections across an entire management system (Hertz and Thomas 
1983, Sainsbury et al. 2000, Punt et al. 2014). A management system consists of an 
operating model that describes stock dynamics and a management strategy that 
describes (1) information collection, (2) scientific analysis or calculations involving 
indicators, and (3) a HCR. Simulated implementation of management tactics is 
also necessary, which can involve simulation of implementation error to evaluate 
implementation effects on HCR performance (Punt et al. 2014). Adjusting fishery 
tactics affects stock dynamics, and stock dynamics are monitored through indicator 
variables. Thus, MSE simulates a closed-loop feedback cycle of management 
decisions that can be simulated over various time horizons. This approach is 
useful for conveying trade-offs in decision-making to fishery managers because 
HCR performance is evaluated in terms of whether fishery management objectives 
are expected to be achieved. We conducted simulations involving the two most 
economically important fisheries in Belize, spiny lobster and queen conch. The 
spiny lobster fishery has historically maintained stable catches and was simulated to 
provide insights into whether indicator-based HCRs would inadvertently introduce 
catch reductions in circumstances where they were perhaps unnecessary. The queen 
conch fishery has had historically stable catches, but in recent decades, increased 
catches have concerned resource managers about continued resource sustainability. 
Our evaluation of HCRs focused on addressing (1) management concerns about 
data quantity and reliability and whether multi-indicator HCRs could mitigate 
these concerns, (2) the robustness of HCR performance in relation to key ecological 
uncertainties about life history and historical and current levels of stock depletion, 
and (3) whether HCRs could help to avoid undesirable resource states when stocks 
were subject to environmentally-driven productivity declines or subjected to 
increasing fishing effort through time.

Methods

Overview of Spiny Lobster and Queen Conch Fisheries.—The Belize spiny 
lobster fishery occurs exclusively by free diving and is currently regulated by a fish-
ing season (from June 15 to February 14 of the following year), a size limit [carapace 
length 3 in (76 mm) or tail weight 4 oz (113 g)], a ban on the use of scuba, gear re-
strictions, and license limitation (Gongora 2010). Fishery selectivity is thought to 
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follow a dome-shaped relationship described in Babcock et al. (2014) with a mini-
mum harvest length of 3 in (76 mm) carapace length. Temporal patterns of monthly 
fishing effort from commercial logbooks at Glover’s Reef suggest that fishing effort 
(boat-days) is highest at the beginning of the season, declines continuously through 
the season, and experiences a slight increase in the final 2 mo. This temporal pattern 
in fishing effort is also reported for the Port Honduras spiny lobster fishery (Babcock 
et al. 2014).

The queen conch fishery occurs by free diving at depths <18 m. The fishing sea-
son occurs between October and June, with a seasonal closure in July, August, and 
September. The fishery is regulated by a size limit on queen conch siphon length and 
by meat weight. The meat weight of 78 g (100% clean weight) is the minimum legal 
harvest weight, and was specified as such in our simulations. Without additional 
information about fishery selectivity, the minimum legal capture weight was used to 
define knife-edge selectivity in our queen conch simulations.

Operating Model.—A spatially explicit operating model was constructed as a 
simulated representation of spiny lobster and queen conch stock dynamics. Spatial 
stock structure consisted of modeling northern Belize (area 1) and southern Belize 
(area 2) as separate stock components to reflect the two major fishing areas in the 
country (Fig. 1). A third stock component, known as area 3, was used to represent 
spiny lobster recruitment contributions to areas 1 and 2 that were attributed to 
sources occurring outside of Belize. The stock dynamics of area 3 were not mod-
eled explicitly; rather, area 3 was considered to be a constant source of spiny lobster 

Figure 1. Conceptual representation of recruitment dispersal. Simulated spatial stock structure 
reflected the two major fishing areas in Belize (Area 1 and Area 2). Area 3 served as a constant 
source of spiny lobster recruitment from locations outside of Belize.
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recruitment. Recruitment that was external to areas 1 and 2 was always specified to 
originate from area 3. No recruitment dispersal occurred between areas 1 and 2, and 
no movement of adult lobster was simulated. This spatial representation was con-
structed because of the high uncertainty that surrounds contributions of localized 
vs long-distance dispersal of larval spiny lobster (Ehrhardt 2005, Butler et al. 2011, 
Truelove et al. 2012, Kough et al. 2013). Despite this uncertainty, fishery manage-
ment decisions are required at national and international scales (FAO 2001, Gongora 
2010, Babcock et al. 2013). Consequently, this simulated spatial structure enabled 
exploration of the sensitivity of spiny lobster HCR performance to scenarios about 
dispersal of recruits. We did not examine spatial dynamics of queen conch and speci-
fied 100% self-recruitment to areas 1 and 2, and no external recruitment input from 
area 3. Queen conch instead served as a stark contrast to spiny lobster in terms of 
exploitation history, which has displayed steady increases in catches since 1989, in 
comparison with the relative stability of spiny lobster catches since 1999 (Gongora 
2010, 2012).

The temporal dynamics of stocks in areas 1 and 2 were calculated using age-struc-
tured cohort equations, operating on a monthly time step (Table 1). Within a month-
ly time step, growth and spawning occurred at the beginning of the month, followed 
by instantaneous rates of natural mortality and fishing mortality (Table 1). For spiny 
lobster, we simulated recruitment of cohorts to the fishery at 76 mm, which also 
coincides with the length at maturity (FAO 2001). Thus, we simulated adult stocks 
of spiny lobster that were assumed 50% female at all sizes, and which were assumed 
to have a longevity of 12 yrs in the adult phase, based upon a natural mortality rate 
of 0.34 yr−1 (FAO 2001, Gongora 2010). Recruitment consisted of first pooling the 
self-recruiting fraction of locally produced recruits with recruits arriving from area 
3, and then applying density-dependent mortality. Peak spawning of spiny lobster 
occurs throughout the Caribbean in spring, which approximately corresponds to 
the Belize fishery closure (Villegas et al. 1982, Chubb 1994, FAO 2001, Cruz and 
Bertelsen 2008). Thus, total recruits of spiny lobster in year y are calculated from 
February spawning biomass in year y − 2, and density-dependent mortality is applied 
as a function of spawning biomass. Ralston and O’Farrell (2008) present Beverton-
Holt stock-recruitment functions with alternative assumptions about the life stages 
in which density-dependent mortality operates. Our simulations are similar to their 
post-dispersal density dependence model and includes a single annual log-normally 
distributed recruitment deviate that is applied to both areas (Ralston and O’Farrell 
2008). Temporal distribution of recruits occurred in February, March, April, and 
May in the quantities of 10%, 20%, 50%, and 20% of the total recruits, respectively. 
This pattern approximates observations that peak recruitment to the fishery com-
monly occurs over a protracted spring period (Villegas et al. 1982, Chubb 1994, FAO 
2001, Cruz and Bertelsen 2008).

An age-structured simulation was similarly constructed for queen conch, except 
that growth was calculated using a relationship between age and clean meat weight 
for the south Caribbean region (Table 1; Ehrhardt and Valle-Esquivel 2008). Queen 
conch were simulated to spawn in July and recruited to the fishery at 78 g (100% clean 
weight), which corresponds to fishery entry in their second year, during the months 
of July (33%), August (33%), and September (34%). Natural mortality was specified 
as a decreasing function of age, which corresponded to an approximate longevity of 
20 yrs after recruitment (Table 1; Ehrhardt and Valle-Esquivel 2008). Since conch 
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vary regionally in their growth characteristics, we specified age at maturation of 4 
yrs (50% female at all sizes) and later explored an alternative maturation age of 6 
yrs in the sensitivity analysis (Appeldoorn 1988, Gongora 2005, Ehrhardt and Valle-
Esquivel 2008).

Simulation Design.—In simulation design, a principal concern was specifica-
tion of historical stock dynamics prior to implementing a HCR. While actual catch 
histories were available for spiny lobster and queen conch, historical biomass trajec-
tories, fishery effort trends, and stock depletion were less well established. The Belize 
Fisheries Department provided spiny lobster and queen conch catches that were re-
ported from fishery cooperatives (Gongora 2010). Because the fishing cooperatives 

Table 1. Processes and parameters of simulated stock dynamics for spiny lobster (Panulirus argus) and 
queen conch (Stombus gigas) off Belize.

Process Parameters Description

Time and area

Area c Areas used in spatial configuration
Time t, a Time step in months, age in years

Life history L1 =76 mm, La+t/12 = La + (Linf − La)(1 − exp(−k⁄12))
Lobster length 
(mm carapace)

Linf = 183,
k = 0.24 yr−1

(2.2046 lbs/kg)W LL
tail = a b

Lobster weight 
(lbs)

α = 0.0046,
β = 2.630

Lobster mortality M = 0.34 yr−1 Constant M for all ages

Conch weight 
(100% clean g)

Winf = 240.8, 
r = 0.691 W W

W
inf

inf
expa

clean
ra= -Q V

Conch weight 
(whole lbs)

α = 3.69,
β = 0.581

0.00220462 lbs/gW Wa
whole

a
clean= + a bQ QV V

Conch mortality c = 2.048, d = 1.108 Ma = ca−d/12

Cohort equations

Survival S Sa,t = exp(−Ma−FtSela), F is fishing mortality

Cohort abundance N Na+1,t+1 = Na,tSa,t

Biomass (lbs) B Ba,t = Na,tWa

Catch (lbs) C Ct,a = FtSela  ⁄(FtSela+ Ma)Na,t(1 − exp(−M − FtSela))Wa
F is fishing mortality, Sel is selectivity at age

Stock-recruitment

Beverton–Holt h = 0.8,
σR = 0.2,
εt ,

h is steepness, σR is recruitment variation, 
εt~Norm(0, σR), R0 is unfished recruits, B0 is unfished 
spawning biomass, w is fraction self recruiting. 
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process all conch and lobster that are exported from Belize, and the vast majority 
of the catch is believed to be exported, the cooperative data are thought to provide 
the most accurate record of total catches that is available. Historical biomass recon-
structions were initiated by calculating an equilibrium age structure at an assumed 
level of biomass depletion in the initial simulation year. The spiny lobster operating 
model was initialized for 1998, using equilibrium age structure that conformed to 
both (1) an assumed level of depletion and (2) the mean catch of 1,537,182 lbs (698,719 
kg) whole weight calculated from the observed catches that occurred between 1999 
and 2013. Each simulated stock area was specified to contribute 50% to the catch. 
The queen conch operating model was initialized for 1977, using equilibrium age 
structure that conformed to both (1) an assumed level of depletion and (2) the mean 
catch of 667,652 lbs (303,478 kg) whole weight, which was calculated as the average 
catch during the relatively stable 20-yr period between 1978 and 1997. Each simu-
lated queen conch stock area was specified to contribute 50% to the catch.

After initializing each stock, monthly catches were used to drive the model for-
ward between the initial year and 2013; we refer to this time period as a historical 
reconstruction. This time period was 1999 to 2013 for spiny lobster and 1978 to 2013 
for queen conch (Fig. 2). Annual catches were divided into monthly catches using the 

Figure 2. Example of simulated stock dynamics for spiny lobster showing (A) reconstruction of 
biomass during the historical time period and (B) reproduction of actual observed catches during 
the historic time period prior to implementation of a simulated harvest control rule. Vertical lines 
indicate transition from historical time period to time period where a simulated harvest control 
rule was implemented; time series (thick solid lines and dashed lines) are two different examples 
of simulation runs.
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proportion of monthly catch totals reported in commercial logbooks from Glover’s 
Reef in 2011 and using the National Queen Conch Quota Disbursement Schedule for 
2012 (Gongora 2012). Noting that recruitment was simulated as a stochastic process, 
each simulation run produced a somewhat unique reconstruction while ensuring 
observed catches were reproduced (Fig. 2). In atypical instances where stock collapse 
occurred during the historical period, simulation runs were considered biologically 
implausible and were removed from the analysis. In reconstructing observed catches, 
fishing effort associated with the catch was a derived quantity. Fishing effort derived 
during reconstruction was used to drive harvests during the forward-looking time 
period in which HCRs were implemented.

Given our uncertainty about reconstruction of spiny lobster and queen conch 
biomass dynamics, we simulated base-case operating models representing different 
scenarios about: (1) initial biomass depletion levels used in historical reconstruc-
tions, (2) the future intensity of fishery effort utilized in the forward-looking time 
period in which HCRs were implemented, and (3) environmentally-driven changes 
in production of recruits during the forward-looking time period. Levels of initial 
spawning stock biomass (SSB) as a fraction of the unfished state were 0.2, 0.5, 0.8. 
Future intensity of fishery effort was held constant at the 2013 derived effort level, 
and alternatively, was simulated as a 3% annual increase to reflect modest fishery 
expansion. Our simulated effort creep of 3% is consistent with reported effort trends 
in Belize, although license limitation programs have recently been introduced at 
Glover’s Reef Marine Reserve (since 2011) and Port Honduras Marine Reserve (since 
2012) (Gongora 2010). Levels of environmentally-driven recruitment variation were 
specified as stochastic recruitment (using the standard assumption of lognormal 
recruitment deviations), and alternatively, as stochastic recruitment coupled with 
a systematic reduction of 30% every sixth and seventh year to coarsely represent 
an El Niño event. For simplicity, in each base-case operating model that we speci-
fied, each stock area had 100% self-recruitment (0% external recruitment input). We 
later examined alternative spatial assumptions regarding recruitment dispersal in 
the sensitivity analysis.

Harvest Control Rules (HCRs).—We evaluated four HCRs for spiny lobster. 
A status quo HCR that reflected the current regulatory size limit and seasonal clo-
sure was simulated (i.e., a status quo HCR), as well as two prescriptive (non-adaptive) 
HCRs that increased minimum harvest size from 76 to 85 mm carapace length or re-
duced fishing season length from 8 to 6 mo. These three HCRs were not constrained 
by a TAC and instead catches were determined only by the intensity of fishing effort 
(i.e., effort specified in relation to the 2013 effort level). We compared these prescrip-
tive HCRs to an adaptive management framework (AMF) that was based on the idea 
that informative indicators would enable an in-season TAC adjustment. Because the 
current capacity of the fishing fleet was driven by intensity of fishing effort, HCRs 
that implemented TACs also specified fishery closure to occur in the month when 
the TAC was achieved. If the TAC was not achieved, closure occurred as usual at the 
end of the fishing season (i.e., spiny lobster: February 14; queen conch: July 1). Since 
fishery closure occurred when the TAC was achieved, our analysis did not address 
implementation uncertainty of TACs. For queen conch, we compared two HCRs: the 
status quo HCR and the AMF HCR.
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The specificity of indicator inputs to the AMF HCR reflected actual types of moni-
toring data associated with spiny lobster and queen conch. For spiny lobster, indica-
tors were catches in the previous year, average length in the catch in the previous year, 
and fishery catch-per-unit-effort (CPUE) during the first 2 mo of the current fishing 
season. Declines in catch trends triggered TAC reduction and increased catch trends 
triggered TAC increases. The catch indicator worked to protect the stock against re-
cruitment failure, but would reward catch increases (whether they were sustainable 
or not) with TAC increases. Average length reflects size-frequency distribution in the 
catch and exploitation status of a stock because as rates of fishing mortality increase, 
fewer individuals reach larger sizes (Beverton and Holt 1957, Gedamke and Hoenig 
2006). Declining average length trends in the catch triggered TAC reductions and 
increasing average length triggered TAC increases. Average length served to main-
tain stable biomass through time and reduce TACs if exploitation rates increased. 
However, anomalously large recruitment events reduce average length because many 
small individuals enter the stock, producing a counter intuitive reduction to TAC. 
Fishery CPUE was simulated to be proportional to exploitable stock biomass, thus 
CPUE increases triggered TAC increases and vice versa. For queen conch, indicators 
were catch, CPUE, and a pre-season survey of mature conch density. The density sur-
vey tracked mature invertebrate abundance, thus higher survey densities triggered 
TAC increases and lower survey densities triggered TAC decreases.

To implement the indicator-based AMF HCR, the following algorithm was 
constructed:

1.	 A set of measured indicators were reported.

2.	 A set of indicator reference conditions were used to determine whether rela-
tive changes to the state of the stock have taken place. Reference conditions 
for spiny lobster were calculated as the means and standard deviations of the 
indicators between 1998 and 2013. Reference conditions for queen conch were 
calculated for the period of stable catches between 1978 and 1997.

3.	 TAC adjustment was made in-season following the second month of each fish-
ing season. The HCR determined if each indicator exceeds an upper reference 
threshold I > (Iref + SD (Iref)) or fell below a lower reference threshold I < (Iref + 
SD (Iref)), where SD is the reference standard deviation of the indicator. The 
maximum TAC adjustment as a percentage of the previous year’s TAC was 
specified a priori. For example, if up to 10% annual change was permitted, 
each indicator contributed in part to this maximum. Indicators that denoted 
an increase would contribute 1/3 × 10/100 to the adjustment, while those de-
noting a decrease would contribute −1/3 × 10/100, and zero adjustment oth-
erwise. The total adjustment as a TAC multiplier was calculated as one plus 
the sum of all indicator contributions. As an additional condition, TACs were 
prevented from being reduced below 0.5 times, or exceeding 1.5 times the ref-
erence mean catch.

In evaluating the AMF harvest control rule, we first considered multi-indicator 
performance when indicators were reported without error. Performance of multi-
indicator HCRs were simulated to allow for up to 10% or 30% annual TAC change. 
We then evaluated AMF HCR performance under imprecision in data collection. In 
this case, catches were still reported without error, but mean length in the catch was 
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estimated by randomly sampling 10% of the catch and relative biomass or abundance 
indices were observed with constant coefficients of variation (CV) of 40%. Index CVs 
were consistent with observed error rates in fish population surveys and values as-
sumed in other simulation studies (Patterson 1998, Karnauskas et al. 2011, Smith et 
al. 2011, McCauley et al. 2012, Zhang 2013).

Performance Measures.—We repeated simulation runs for each operating 
model configuration 500 times and calculated five performance measures. The first 
was the probability of stock collapse at the end of the 30-yr MSE period. We deter-
mined whether the mean spawning biomass in the final 3 yrs of the forward-looking 
projections was <10% of the “true” unfished spawning biomass. The fraction of times 
this condition occurred represented the probability of stock collapse. The second 
was biomass stability and was calculated as the ratio of spawning biomass at the end 
of the forward-looking projections to the spawning biomass at the start of the for-
warding-looking projections (using 3-yr means). Biomass stability near 1 indicates 
similar stock size at the beginning and end of the forward-looking period, while val-
ues <1 indicate biomass declines. The third and fourth metrics were the sum total 
value of catches across each 30-yr forward projection period and mean catch at the 
end of the forward-looking period, respectively. Catch value in BZ$ was calculated 
by determining the processed weight of the catch (lobster: tail weight in lbs; queen 
conch: 100% clean meat weight) and multiplying by current fisher’s sale prices. The 
fifth was the inter-annual coefficient of variation in the catch, which reflects year-to-
year catch stability.

Sensitivity Analysis.—In the sensitivity analysis, we investigated the effects of 
recruitment dispersal on HCR performance. Thus, we simulated 50% self-recruit-
ment and 10% self-recruitment scenarios, and compared these scenarios to the corre-
sponding base-case operating model that specified 100% self-recruitment. Sensitivity 
of HCR performance to aspects of spiny lobster and queen conch life history were 
also explored. For stock-recruitment steepness, we compared HCR performance for 
spiny lobster when steepness was modified to 0.5 or 0.97 from the base-case of 0.8. 
We also evaluated sensitivity of HCR performance to queen conch age at maturity. 
Since queen conch vary regionally in their growth characteristics, we modified the 
base-model specification of maturity at age 4 to an age at maturity of 6 yrs.

Results

Base-case Operating Models.—Throughout this results section, model out-
comes for spiny lobster are presented for base-case scenarios involving initial SSB/
SSB unfished of 0.2 and 0.5, as results for SSB/SSB unfished 0.5 and 0.8 were quali-
tatively similar. Historical reconstruction suggested that queen conch biomass de-
clined through the simulated historical time period, and thus, specifying initial SSB/
SSB unfished of 0.2, led to very frequent stock collapse before the end of the histori-
cal period. It therefore seemed biologically unreasonable to assume that the stock 
could have been at such a low initial state in 1977 and we only present results for 
queen conch involving initial SSB/SSB unfished of 0.5 and 0.8.

We begin by reporting AMF HCR performance relative to the status quo and to 
prescriptive HCRs when indicators were reported without error. For spiny lobster, 
simulating constant fishing effort into the forward-looking period produced biomass 
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and catches that remained relatively constant when the AMF rule was used, suggest-
ing that this HCR did not dramatically modify catches when there was little cause to 
do so (Table 2). Not surprisingly, a prescriptive increase in minimum harvest length 
from 76 mm to 85 mm CL (while maintaining constant fishing effort) produced long-
term increases in SSB (Table 2). Introducing effort creep or recruitment declines, 
both of which act to modify resource state, demonstrated the benefits of the AMF 
rule. The AMF rule fared better at avoiding biomass declines than the status quo, 
which fared poorly during scenarios of effort creep and recruitment decline (Fig. 
3). Also, the simulated historical stability of biomass trends for spiny lobster is con-
tinued using the AMF HCR under perturbations to fishing effort or stock produc-
tivity, although there is considerable overlap in performance with the prescriptive 
HCRs (Fig. 4). Results for the effort creep scenario are encouraging as biomass sta-
bility can be retained using indicator-based HCRs (Fig. 4), and similar results were 
found for the scenario of periodic recruitment decline. Achieving biomass stability 
under effort increases and periodic recruitment declines came at some expense to 
catch value, with the increased size-at-harvest HCR producing the highest long-term 

Table 2. Spiny lobster (Panulirus argus) performance measures for multi-indicator adaptive 
management framework (AMF) when indicators are reported with and without observation error. 
Simulations initialized at spawning stock biomass (SSB)/SSB unfished of 0.2. Catches in millions 
BZ$, CV is coefficient of variation. Mean values are reported with standard errors in parentheses. 
TAC is total allowable catch.

Management framework
Probability 
of collapse

Biomass 
stability

Total 
catch

End-state
catch

Catch 
CV

Without observation error
 Constant effort scenario

Status quo (no TAC) 0.16 0.91 (0.25) 275 (41) 9.0 (1.7) 0.12
Increased size at harvest (no TAC) 0.05 1.31 (0.22) 299 (24) 10.2 (1.3) 0.12
Decreased fishing season (no TAC) 0.09 1.15 (0.24) 276 (29) 9.3 (1.4) 0.10
AMF (10% max TAC adjustment) 0.03 1.12 (0.29) 282 (37) 9.6 (1.7) 0.12
AMF (30% max TAC adjustment) 0.03 1.15 (0.23) 286 (22) 9.6 (1.3) 0.13

 Effort creep scenario
Status quo (no TAC) 0.63 0.33 (0.17) 260 (62) 7.0 (3.1) 0.22
Increased size at harvest (no TAC) 0.27 0.66 (0.16) 312 (37) 10.1 (2.1) 0.14
Decreased fishing season (no TAC) 0.40 0.48 (0.19) 278 (49) 8.5 (2.7) 0.16
AMF (10% max TAC adjustment) 0.24 0.66 (0.22) 280 (52) 8.9 (2.4) 0.16
AMF (30% max TAC adjustment) 0.19 0.73 (0.19) 287 (31) 9.2 (1.9) 0.14

 Recruitment decline scenario
Status quo (no TAC) 0.28 0.59 (0.19) 215 (36) 5.3 (1.3) 0.29
Increased size at harvest (no TAC) 0.18 0.83 (0.15) 233 (21) 6.1 (0.9) 0.25
Decreased fishing season (no TAC) 0.20 0.70 (0.18) 216 (24) 5.6 (1.0) 0.24
AMF (10% max TAC adjustment) 0.09 0.92 (0.27) 213 (33) 5.7 (1.2) 0.24
AMF (30% max TAC adjustment) 0.06 1.03 (0.23) 214 (23) 5.9 (1.1) 0.23

With observation error
 Effort creep scenario

AMF (10% max TAC adjustment) 0.22 0.65 (0.21) 288 (38) 9.2 (1.9) 0.12
AMF (30% max TAC adjustment) 0.19 0.68 (0.20) 287 (34) 8.9 (1.9) 0.14

Recruitment decline scenario
AMF (10% max TAC adjustment) 0.09 0.93 (0.27) 213 (33) 5.7 (1.3) 0.24
AMF (30% max TAC adjustment) 0.05 1.04 (0.20) 216 (18) 5.9 (0.7) 0.21
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catches and the AMF HCR leading to catch reductions during the forward-looking 
MSE phase (Fig. 4).

Given the increasing trend in queen conch catches between 1978 and 2013, it was 
not surprising that maintaining the 2013 effort levels or increasing this effort level as 
the simulations entered the forward-looking MSE period led to high probability of 
stock collapse (Table 3). When initial SSB/SSB unfished was specified at 0.5, queen 
conch biomass declined, on average, to 0.3 SSB/SSB unfished by the start of the for-
ward-looking MSE period. During the forward-looking MSE period, the probability 
of collapse was >0.90 across effort creep and recruitment decline scenarios for status 
quo management (Table 3). Probability of collapse was reduced using the AMF HCR, 
with probabilities <0.6 for the constant effort scenario and the periodic recruit-
ment decline scenario, and a probability <0.85 for the effort creep scenario (Table 3). 
Queen conch simulations were also particularly instructive about the dependency 
of future catch value on the specified initial level of biomass depletion. This means 

Figure 3. Probability of spiny lobster stock collapse (Pr(SSB/SSBunfished < 0.1)) in (A) base-
case scenarios of constant effort, (B) effort creep at 3% yr−1, and (C) environmentally-driven 
reduction in recruitment. Simulations initialized at SSB/SSBunfished of 0.2, CL is carapace 
length, AMF is adaptive management framework, SSB is spawning stock biomass, TAC is total 
allowable catch.
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that after a historical reconstruction, if the 2013 stock size remained larger than 
the biomass expected to produce maximum sustainable yield (MSY), then increased 
fishing effort would produce increased long-term catches. This trend was common 
for conch simulations initialized at 0.8 SSB/SSB unfished, as reduction of stock bio-
mass via status quo management led to higher catches, whereas the more conserva-
tive AMF rule worked to maintain historically lower catches (Fig. 5). If, however, the 
2013 stock size was smaller than the biomass expected to produce MSY, increased 
effort would further reduce stock size and would lead to poor long-term catches, as 
was commonly the case for simulations initialized at 0.5 SSB/SSB unfished (Fig. 5). 
This result is intuitive and reflects the inability of the indicator approach to provide 
any direct information about MSY. In the instance where long-term biomass trends 
were already well below the “true” biomass level that would produce MSY, the AMF 
rule helped to better maintain catches and avoid stock collapse relative to the status 
quo HCR, although probability of stock collapse remained quite high regardless of 
HCR formulation (Table 3).

For both spiny lobster and queen conch, we also simulated the separate implemen-
tation of each indicator used in the AMF (Tables 4, 5). The results of simulating the 
separate performance of each indicator without observation error served as a cau-
tionary example of some subtleties of using catch and mean length as indicators of 
stock trajectory. As expected, increases in fishing effort via the effort creep scenario 

Figure 4. Spiny lobster spawning stock biomass (SSB) stability and end-state catch value BZ$ un-
der 3% annual effort creep during the forward-looking management strategy evaluation (MSE) 
period. S is the resource state just prior to the forward-looking MSE time period, × is the status 
quo case, ■ is TAC 30% max, ▲ is total allowable catch (TAC) 10% max, ◊ is shortened season, 
○ is increased minimum harvest size. Error bars are ± 1 standard deviation.
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resulted in higher catches, which were rewarded with higher TACs when catch alone 
was used as an indicator in isolation. This scenario led to high probability of stock 
collapse and destabilized the spiny lobster stock (Table 4). These negative perfor-
mance trajectories were more dramatic for queen conch (Table 5). In the periodic 
recruitment decline scenario, the shortcomings of using mean length for spiny lob-
ster TAC adjustments were also pronounced (Table 4). Increased probability of stock 
collapse and greater instability occurred in this instance because recruitment fluc-
tuations produce counter intuitive changes in TAC adjustments when mean length 
alone was used in adjusting TACs.

We next returned to the simulation of multi-indicator AMF control rules when 
indicators were reported to the HCRs with observation error. Observation error was 
introduced to indicators by estimating mean length in the catch by sampling 10% of 
the catch and by introducing a 40% CV on observations of biomass indices. In com-
paring multi-indicator AMF HCR performance when simulated with and without 
observation error, we observed reasonable consistency in HCR performance (Tables 
2, 3). In further examining the performance of the multi-indicator AMF, we con-
trasted its performance against that of using CPUE in a single-indicator approach 
when both were subject to observation error. Noting that CPUE is proportional to 
biomass in our simulations, it is not surprising that it was the best performing single 
indicator across all operating model scenarios, and thus, was used in contrasts with 
the multi-indicator AMF. Beginning with the recruitment decline scenario, the spiny 

Table 3. Queen conch (Stombus gigas) performance measures for multi-indicator adaptive 
management framework (AMF) when indicators are reported with and without observation error. 
Simulations initialized at spawning stock biomass (SSB)/SSB unfished of 0.5. Catches in millions 
BZ$, CV is coefficient of variation. Mean values are reported with standard errors in parentheses. 
TAC is total allowable catch.

Management framework
Probability 
of collapse

Biomass 
stability

Total 
catch

End-state
catch

Catch 
CV

Without observation error
     Constant effort scenario

Status quo (no TAC) 0.98 0.13 (0.10) 105 (31) 2.2 (1.3) 0.52
AMF (10% max TAC adjustment) 0.20 0.79 (0.36) 126 (27) 4.1 (1.6) 0.24
AMF (30% max TAC adjustment) 0.08 0.93 (0.16) 138 (10) 4.8 (0.5) 0.12

     Effort creep scenario
Status quo (no TAC) 1.0 0.01 (0.02) 85 (26) 0.5 (0.6) 0.85
AMF (10% max TAC adjustment) 0.84 0.28 (0.17) 127 (36) 3.5 (1.9) 0.32
AMF (30% max TAC adjustment) 0.84 0.30 (0.13) 137 (20) 4.0 (1.1) 0.15

     Recruitment decline scenario
Status quo (no TAC) 0.99 0.07 (0.06) 81 (22) 1.0 (0.7) 0.80
AMF (10% max TAC adjustment) 0.58 0.36 (0.30) 91 (23) 1.8 (1.2) 0.52
AMF (30% max TAC adjustment) 0.37 0.61 (0.18) 106 (12) 2.8 (0.5) 0.27

With observation error
     Effort creep scenario

AMF (10% max TAC adjustment) 0.92 0.17 (0.17) 112 (37) 2.3 (2.0) 0.48
AMF (30% max TAC adjustment) 0.86 0.30 (0.12) 134 (22) 3.9 (1.2) 0.19

    Recruitment decline scenario
AMF (10% max TAC adjustment) 0.70 0.26 (0.25) 88 (22) 1.4 (1.0) 0.61
AMF (30% max TAC adjustment) 0.35 0.59 (0.20) 104 (15) 2.7 (0.7) 0.34
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lobster multi-indicator AMF performed similarly or fared better than CPUE alone 
for most performance metrics (Tables 2, 4). Under the effort creep scenario, CPUE 
alone fared better than the multi-indicator AMF and we expect that this result oc-
curred because of the influence of the catch indicator producing undesirable TAC 
increases (or hindering TAC reductions) as fishing effort increased (Tables 2, 4). For 
queen conch, interpreting the multi-indicator AMF comparison to single-indicators 
of relative biomass (survey density or CPUE) was more complex and required ac-
counting for instability of biomass trajectories at the beginning of the forward-look-
ing MSE period. First, note that the multi-indicator AMF 30% max TAC adjustment 
performed better across most scenarios than its 10% max TAC adjustment counter-
part (Table 3). The reason for this result is that as declining queen conch biomass 
trajectories entered the forward-looking MSE period, recursive 10% TAC reductions 
may have been inadequate in some instances to stop continued biomass declines, 

Figure 5. End-state queen conch fishery value (millions BZ$) for base-case scenarios of 0.5 SSB/
SSB unfished and 0.8 SSB/SSB unfished initial conditions. Compared are the status quo harvest 
control rule and adaptive management framework harvest control rule [with 30% max annual 
total allowable catch (TAC) change]. Summaries are provided for scenarios of (A) constant ef-
fort, (B) effort creep at 3% yr−1, and (C) recruitment decline. SSB is spawning stock biomass.
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whereas 30% TAC reductions had improved performance (Table 3). Second, the use 
of catch in the multi-indicator AMF probably produced TAC increases (or hindered 
TAC reductions), thus lowering performance of the multi-indicator AMF relative 
to CPUE or density alone (Tables 3, 5). Thus, in the case of queen conch dynamics 
using the relative biomass indicator alone offered better performance than the multi-
indicator AMF, although the magnitude of TAC adjustments remains a critical issue 
in queen conch AMF performance.

Sensitivity Analysis.—In the sensitivity analysis, we modified assumptions 
about external recruitment to include the effects of 50% self-recruitment, and 10% 
self-recruitment on HCR performance. In some instances, the post-dispersal recruit-
ment process produced very strong compensatory responses, which should be inter-
preted with caution. Strong compensatory responses occurred when local spawning 
stock was greatly depleted, but where external sources of recruitment remained rela-
tively large. This combination of high recruit survival rate coupled with large influx 
of recruits from area 3, sometimes produced highly unstable dynamics. Fortunately, 
for both spiny lobster and queen conch, biomass stability was more sensitive to over-
all biomass declines caused by fishing effort increases or recruitment declines than 
it was to instability in stock-recruitment dynamics. Across levels of self-recruitment, 
stability remained highest for the AMF rule, relative to prescriptive alternatives. A 
notable effect of high quantities of external recruits was on long-term fishery value. 
Because local stock resiliency was raised with higher external inputs of recruits, 
higher catches could be sustained without dramatic biomass declines.

Performance sensitivity to stock-recruitment steepness was investigated by modi-
fying the base-case specification of 0.8 for spiny lobster to 0.5 and 0.97. For status quo 
management, model outcomes were affected by steepness, as decreased steepness 

Table 4. Spiny lobster (Panulirus argus) performance measures of adaptive management 
framework when indicators were each applied separately in adjusting total allowable catch up to 
10% annually. Simulations were initialized at spawning stock biomass (SSB)/SSB unfished of 0.2 
Catches in millions BZ$, CV is coefficient of variation, CPUE is fishery catch per unit effort. Mean 
values are reported with standard errors in parentheses.  

Indicator
Probability 
of collapse

Biomass 
stability

Total 
catch

End-state
catch

Catch 
CV

Without observation error
Effort creep scenario

Catch 0.38 0.60 (0.27) 278 (48) 8.8 (2.6) 0.16
CPUE 0.13 0.76 (0.19) 286 (37) 9.4 (1.9) 0.14
Mean length in catch 0.17 0.70 (0.21) 286 (42) 9.2 (2.0) 0.13

Recruitment decline scenario
Catch 0.08 1.04 (0.31) 204 (31) 5.6 (1.3) 0.25
CPUE 0.07 0.89 (0.21) 216 (29) 6.0 (1.2) 0.24
Mean length in catch 0.17 0.69 (0.19) 217 (30) 5.7 (1.2) 0.23

With observation error
Effort creep scenario

CPUE 0.24 0.63 (0.23) 282 (49) 8.9 (2.5) 0.14
Mean length in catch 0.18 0.69 (0.22) 285 (43) 9.1 (2.2) 0.13

Recruitment decline scenario
CPUE 0.13 0.81 (0.27) 213 (35) 5.6 (1.4) 0.25
Mean length in catch 0.20 0.68 (0.21) 216 (33) 5.6 (1.3) 0.24
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reduced stock resiliency and consequently affected the end-value of the fishery (Fig. 
6). Comparatively, the multi-indicator AMF rule was reasonably insensitive to steep-
ness in terms of preserving biomass stability, reducing probability of collapse, and 
maintaining fishery value (Fig. 6). In the queen conch operating model, we assumed a 
constant relationship between age and clean meat weight for the south Caribbean re-
gion. This age-weight relationship indicated that queen conch entered the fishery in 
their second year. We specified age at maturation of 4 yrs in the base-case operating 
model and explored an alternative maturation age of 6 yrs in the sensitivity analysis. 
In the case of status quo management, probability of collapse was not noticeably 
reduced by increasing maturation age to 6 yrs. This effect was particularly acute for 
the effort creep scenario, as fishing effort increased through the forward-looking 
MSE period (Fig. 7). When the multi-indicator AMF rule was introduced, reasonably 
similar levels of biomass stability and fishery value were preserved by the control 
rule. This result suggests that the AMF rule was reasonably robust to uncertainty 
about maturation for the range of ages that we considered.

Discussion

When data-limited fisheries are managed with little scientific input, poor social 
and economic outcomes can sometimes result for communities that are dependent 
on fishing (Worm et al. 2009, Costello et al. 2012). Across all the simulations that 
we conducted, AMF HCRs (those that annually adjust a TAC) tended to outperform 
status quo and prescriptive strategies (including increased harvestable size limit and 
decreased season length) in maintaining biomass stability through time and de-
creasing the risk of stock collapse. This result occurred not only for scenarios when 

Table 5. Queen conch (Stombus gigas) performance measures of adaptive management framework 
when indicators were each applied separately in adjusting total allowable catch up to 10% annually. 
Simulations were initialized at spawning stock biomass (SSB)/SSB unfished of 0.5. Catches in 
millions BZ$, CV is coefficient of variation, CPUE is fishery catch per unit effort. Mean values are 
reported with standard errors in parentheses.

Indicator
Probability 
of collapse

Biomass 
stability

Total 
catch

End-state
catch

Catch 
CV

Without observation error
Effort creep scenario

Catch 0.99 0.02 (0.04) 99 (32) 0.8 (1.0) 0.68
CPUE 0.82 0.32 (0.13) 138 (20) 4.1 (1.1) 0.15
Survey density 0.82 0.32 (0.12) 138 (22) 4.1 (1.2) 0.17

Recruitment decline scenario
Catch 1.00 0.08 (0.07) 84 (23) 1.0 (0.7) 0.69
CPUE 0.35 0.60 (0.21) 104 (16) 2.8 (0.8) 0.30
Survey density 0.35 0.60 (0.21) 105 (15) 2.8 (0.7) 0.29

With observation error
Effort creep scenario

CPUE 0.84 0.33 (0.12) 139 (19) 4.1 (1.0) 0.15
Survey density 0.82 0.31 (0.14) 135 (25) 3.9 (1.3) 0.19

Recruitment decline scenario
CPUE 0.38 0.58 (0.21) 104 (16) 2.7 (0.7) 0.31
Survey density 0.39 0.53 (0.26) 100 (20) 2.4 (1.0) 0.38
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effort stayed constant through time, but perhaps more importantly, also in the sce-
nario of effort creep at 3% yr−1 and for environmentally-driven periodic reduction 
in recruitment. Thus, TACs implemented through indicator-based HCRs appear to 
offer improved biomass stability and decreased risk of stock collapse relative to cir-
cumstances where total catches remain unregulated. As in any management plan-
ning process, tradeoffs exist between the HCRs we evaluated. While AMF HCRs 
performed better in terms of maintaining biomass stability and decreasing the risk 
of stock collapse, they generally were more conservative than prescriptive control 
rules in terms of long-term fishery catches.

Our analysis produced three main conclusions about the use of indicator-based 
approaches to making TAC adjustments. The first conclusion was that management 
strategy performance can be sensitive to historical stock trajectories entering the 
time period when a HCR is implemented, and some care is needed in considering 
plausible historical stock trajectories in MSE design. Our spiny lobster fishery simu-
lations demonstrated that when relatively stable catches have historically persisted, 
adaptive HCRs can be introduced that help to ensure that these catches can con-
tinue into the foreseeable future. That is, an indicator-based AMF can be used to 
guard against several factors, like increased entry to the fishery or environmentally 
caused recruitment fluctuations in fisheries that are otherwise relatively stable. Our 

Figure 6. Sensitivity of control rule performance to assumptions about spiny lobster stock-re-
cruitment steepness. Base-case steepness of 0.8 was compared to assumptions of 0.5 and 0.97 
in the scenario of effort creep at 3% yr−1. The base-case scenario of initial conditions of SSB/
SSB unfished of 0.2 are shown. Rows of plots are harvest control rules [status quo, Adaptive 
management framework (AMF) with 30% max annual total allowable catch (TAC) change, and 
Increased carapace length (CL) to 85 mm] and columns are performance metrics [probability of 
collapse, standing stock biomass (SSB) stability, and Fishery value of processed catch in millions 
of $BZ]. Error bars are ± 1 standard deviation.
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simulations did not evaluate regime shifts, and management strategy performance 
could be substantially poorer under these circumstances (Vert-pre et al. 2013). The 
simulated declining trajectories of the queen conch stocks illuminated subtler as-
pects of AMF HCR design, including the possibility that stock declines coupled with 
environmentally-induced recruitment declines require consideration of the strength 
of management interventions (i.e., 10% TAC reductions vs 30% TAC reductions).

The second conclusion was that performance of indicator-based management 
strategies was sensitive to the state of stock depletion corresponding to specified 
reference conditions. This conclusion was pronounced in queen conch simulations, 
which demonstrated that optimizing economic performance depended greatly on 
depletion status. Perhaps problematically, actual reference conditions used to imple-
ment indicator-based approaches can rarely be chosen based on actual depletion sta-
tus, but can be chosen to reflect other conditions like maintaining current catch rates 
(Hilborn et al. 2002). In simulating an indicator-based AMF, this strategy did not at-
tempt to direct stock dynamics toward the biomass associated with MSY, but impor-
tantly, the AMF did serve as a beneficial control against stock collapse. It is clear then 
that continued long-term use of indicator-based approaches influence the types of 
management objectives that can be achieved, but conversely, mandated management 
objectives may influence the long-term viability of indicator-based management ap-
proaches. But where data-limitations currently persist, indicator-based HCRs may 
well support interim fishery policies while alternative policies and monitoring pro-
grams are developed, or until sufficiently long time series accumulate that can be 
used to estimate target or limit reference points via quantitative stock assessment 
(Caddy and McGarvey 1996, Quinn and Deriso 1999). Queen conch simulations re-
vealed a trade-off between the availability of information for decision-making and 
the optimality of those decisions. This means that indicator-based management 
helped to protect spawning biomass in some circumstances, but gaining additional 

Figure 7. Sensitivity of control rule performance to assumptions about conch age at maturity. 
Base-case age 4 maturity was compared to age 6 maturity in the scenario of effort creep at 3% 
yr−1. Simulations initialized at SSB/SSB unfished of 0.5. Rows of plots are harvest control rules 
[status quo, adaptive management framework (AMF) with 30% max annual total allowable catch 
(TAC) change] and columns are performance metrics (Probability of collapse, SSB stability, and 
Fishery value of processed catch in millions of $BZ). Error bars are ± 1 standard deviation. SSB 
is spawning stock biomass.
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monitoring information that could lead to MSY estimation (or other management 
reference points) could potentially produce improved catches.

The third conclusion was that the multi-indicator aspect of the AMF HCR rea-
sonably mitigated the influence of observation error on TAC adjustments under the 
conditions that we simulated. This finding was informative because it demonstrated 
that when observation errors occur independently between indicators (i.e., are not 
correlated) that a multi-indicator approach can potentially perform well and can 
do so without allowing noisy indices to inadvertently influence TAC adjustments. 
Further, we used a buffer of 1 standard deviation in determining whether indicator 
values exceeded or fell below reference thresholds, which appeared to be sufficient to 
prevent erroneous TAC adjustments from being repeatedly implemented. It appears, 
however, that performance of the AMF HCR was largely driven by relative biomass 
indices, and this metric should not be undervalued for use in indicator-based HCRs 
(Geromont and Butterworth 2015b, Jardim et al. 2015, Harford and Babcock 2016).

Our MSE was constructed to provide a first-order evaluation of the multi-indicator 
adaptive management framework being developed in collaboration with the Belize 
Fisheries Department. Our performance analysis is only one aspect of the broader 
stakeholder driven processes associated with fishery policy development (Dowling 
et al. 2015). In addition, we view MSE as a decision support tool that best fits within 
a broader and recursive process of consultation with managers and stakeholders. 
Accordingly, several challenges remain to be addressed through simulated MSE. 
Operating model development could focus on spatial and temporal fishing patterns, 
changes in gear types or selectivity, recruitment pulses and shifting baselines in 
stock productivity, and variability in somatic growth rates. Design of HCRs could 
focus on refining the reference conditions representing “acceptable” catch levels, ex-
amining indicator weightings (perhaps based upon index precision), changing the 
frequency of TAC adjustments (including setting TACs for several years at a time), 
hyperstability in CPUE, addressing practical impediments to making timely in-sea-
son TAC adjustments, and confronting implementation error, catch compliance, and 
catch reporting accuracy. Consultation with the Belize Fisheries Department and 
Belize fisheries experts continues as a means to seek improvement of this manage-
ment framework.
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