
1 

Population dynamics, relative abundance, and habitat suitability of adult red drum 
(Sciaenops ocellatus) indicate vulnerability to harvest in nearshore waters of the north 
central Gulf of Mexico 

Crystal LouAllen Hightower1,2, J. Marcus Drymon3,4, Amanda E. Jefferson3,4, Matthew B. 
Jargowsky3,4, Emily A. Seubert3, Simon Dedman5, John F. Mareska6, Sean P. Powers1,2, * 

1. University of South Alabama
Department of Marine Sciences
5871 USA Drive North
Mobile, AL 36688, United States

2. Dauphin Island Sea Lab
101 Bienville Boulevard
Dauphin Island, AL 36528, United States

3. Mississippi State University
Coastal Research and Extension Center
1815 Popps Ferry Road,
Biloxi, MS 39532, United States

4. Mississippi-Alabama Sea Grant Consortium
703 East Beach Drive
Ocean Springs, MS 39564, United States

5. Stanford University
Hopkins Marine Station
120 Oceanview Blvd
Pacific Grove, CA 93950, United States

6. Alabama Department of Conservation and Natural Resources
Marine Resources Division
PO Box 189
Dauphin Island, AL 36528, United States

* Corresponding author
spowers@disl.edu

Tab A. No. 8(b)



 

 
 

2 

Abstract 1 

Gulf of Mexico red drum (Sciaenops ocellatus) is an immensely popular sportfish, yet is 2 

currently managed as a data-limited stock in federal waters. Despite advances in data-limited 3 

assessments, the most recent federal stock assessment for Gulf of Mexico red drum was not 4 

recommended for providing management advice. Consequently, we sought to address data gaps 5 

highlighted in the assessment by i) producing up-to-date overall and sex-specific growth models, 6 

ii) updating estimates of natural mortality, iii) generating standardized indices of relative 7 

abundance, and iv) providing predictions of habitat suitability. Using a data series from 2006 – 8 

2018, ages ranging from 0 – 36 years were assigned to 1,178 red drum. A negative binomial 9 

generalized linear model including the variables year, depth, surface temperature, dissolved 10 

oxygen, and bottom salinity was used to standardize an index of relative abundance. 11 

Examination of catch per unit effort revealed that adult red drum were significantly more 12 

abundant in state waters relative to federal waters. These findings were well explained by habitat 13 

suitability models, which identified surface velocity, surface temperature, and depth as the 14 

strongest predictors of relative abundance. Collectively, our investigation reveals that the adult 15 

spawning stock is not fully protected by the harvest moratorium in federal waters.  16 

  17 
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Introduction 18 

Advances in data collection approaches and stock assessment techniques have ushered in 19 

the next generation of United States stock assessments (Lynch et al. 2018). For data-rich stocks, 20 

traditional catch and catch per unit effort (CPUE) are increasingly augmented with robust 21 

fishery-independent data sources and ecosystem-based inputs (Lynch et al. 2018), often using 22 

spatially-explicit approaches (e.g., Goethel et al. 2011, Berger et al. 2017). Despite these 23 

advances, more than half of US stocks remain data-limited (Newman et al. 2015). Improving 24 

basic data inputs for data-limited stocks is imperative for increasing the quality of assessments 25 

for these species. For stocks under aggressive rebuilding schedules, where catch data may not 26 

reflect population trends or where harvest is completely restricted, the need for reliable time 27 

series that track abundance is even more critical. 28 

Gulf of Mexico (GoM) red drum (Sciaenops ocellatus) are a highly prized species 29 

supporting valuable recreational fisheries. Recreational harvest of red drum is permitted in all 30 

GoM state waters (out to 3 nautical miles (nmi) in Louisiana, Mississippi, and Alabama and out 31 

to 9 nmi in Texas and Florida), but a harvest moratorium in federal waters has been in place 32 

since 1987. In addition, commercial harvest is prohibited in all GoM states except Mississippi. 33 

Consequently, the data sources that would be useful for assessing GoM red drum (e.g., 34 

commercial landings) are lacking (Powers et al. 2012). Thus, despite a wealth of knowledge on 35 

population connectivity (e.g., Rooker et al. 2010), movement and recruitment (e.g., Burnsed et 36 

al. 2020), and spawning (e.g., Lowerre-Barbieri et al. 2019), GoM red drum are classified by 37 

NOAA Fisheries as a “data-limited species” (SEDAR 2016).  38 

The 2006 amendment to the Magnuson-Stevens Fishery Conservation and Management 39 

Act required annual catch limits for all federally managed stocks, a mandate that spurred 40 
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significant advances in the development of data-limited assessment methods (Newman et al. 41 

2015). One of these data-limited methods (DLMtool, Carruthers and Hordyk 2018) was recently 42 

used to assess a suite of data-limited species in the GoM, including lane snapper (Lutjanus 43 

synagris), wenchman (Pristipomoides aquilonaris), yellowmouth grouper (Mycteroperca 44 

interstitialis), speckled hind (Epinephalus drummondhayi), snowy grouper (E. niveatus), almaco 45 

jack (Seriola rivoliana), lesser amberjack (S. fasciata), and red drum (SEDAR 2016). During this 46 

assessment, at least one data-limited method was identified as having preferable performance 47 

compared to the status quo for every species examined, with the notable exception of red drum 48 

(SEDAR 2016). Thus, despite new tools tailored to the assessment of data-limited species, 49 

coupled with a wealth of information about red drum population biology and ecology, the 50 

outputs from this assessment were not recommended for providing management advice for red 51 

drum (SEDAR 2016). 52 

While many stocks will inevitably remain data-limited (Newman et al. 2015), careful 53 

examination of existing data deficiencies can improve our ability to assess stocks like GoM red 54 

drum. Specific data recommendations from the most recent red drum assessment included i) 55 

expand efforts to collect age and length samples at varying sizes, seasons, months, and locations, 56 

particularly for offshore fish, ii) identify or optimize fishery-independent surveys to characterize 57 

relative abundance in federal waters, and iii) explore ways to increase data collection from 58 

existing fishery-independent surveys (SEDAR 2016). To that end, the goals of this study were to 59 

combine data from fishery-independent surveys operating throughout the year and across the 60 

continental shelf to i) produce up-to-date overall and sex-specific growth models, ii) update 61 

estimates of natural mortality, iii) generate standardized indices of relative abundance, and iv) 62 
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provide predictions of habitat suitability for red drum in the north central GoM, which can then 63 

be used to optimize future fishery-independent surveys. 64 

 65 

Materials and Methods 66 

Data collection 67 

Catch data for adult red drum were collected as part of fishery-independent bottom 68 

longline surveys conducted during spring, summer, autumn, and winter in the north central GoM 69 

from 2006 – 2018 (Figure 1). Bottom longline locations were selected using a stratified-random 70 

sampling design and sampled following standardized methods described in Drymon et al. (2013, 71 

2020). Briefly, the main line consisted of 1.85 km (1 nmi) of 4 mm monofilament (545 kg test) 72 

that was set with 100 gangions. Gangions consisted of a longline snap and a 15/0 circle hook 73 

baited with Atlantic mackerel (Scomber scombrus). Each gangion was made of 3.66 m of 3 mm 74 

monofilament (320 kg test). All sets were soaked for 1 hour and mid-set measurements of 75 

surface and bottom temperature (°C), salinity (psu), and bottom dissolved oxygen (mg l-1), as 76 

well as start and end set-depth (m), were recorded. During the bottom longline retrieval, all red 77 

drum encountered were measured to the nearest mm (maximum total length), weighed, and 78 

retained red drum were sexed. Sagittal otoliths were extracted for age and growth analyses. 79 

Catch data were converted to CPUE, expressed as the number of individuals 100 hooks−1 hour−1. 80 

To augment the collection of adult red drum from the bottom longline survey, smaller red 81 

drum were collected and aged from the Alabama Department of Conservation and Natural 82 

Resources, Marine Resources Division (AMRD) monthly gillnet survey from 2006 – 2018. This 83 

survey included areas of Coastal Alabama from eastern Mississippi Sound to western Perdido 84 

Bay and Mobile Bay (Figure 1; Livernois et al. 2020). The AMRD gillnet survey involves two 85 
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different nets: a small mesh gillnet and a large mesh gillnet. The small mesh gillnet consists of 5 86 

panels that are 45.0 m long by 2.4 m deep, each containing stretch meshes ranging in size from 87 

5.1 – 10.2 cm. The large mesh gillnet consists of 4 panels that are also 45.0 m long by 2.4 m 88 

deep, with stretch meshes ranging in size from 11.4 – 15.2 cm. Red drum caught in either gillnet 89 

were measured to the nearest mm (maximum total length), weighed, and sexed. Sagittal otoliths 90 

were extracted for age and growth analyses. 91 

For all ages combined (longline and gillnet), two-sample Kolmogorov-Smirnov tests 92 

were used to examine differences in length and weight distributions between sexes. Some 93 

longline-collected red drum lacked total length measurements. For longline-collected red drum 94 

that had both maximum total and fork length measurements, maximum total length was 95 

regressed on fork length, resulting in the equation:  96 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ = 1.04(𝐹𝑜𝑟𝑘 𝐿𝑒𝑛𝑔𝑡ℎ) + 23.53   (1) 97 

where total and fork lengths are expressed in millimeters (n = 346, R2 = 0.96). This regression 98 

was used to estimate lengths of longline-collected red drum that were lacking a maximum total 99 

length measurement (n = 238). 100 

 101 

Otolith processing and aging 102 

All otoliths were processed following procedures detailed in Powers et al. (2012) and 103 

VanderKooy et al. (2020). A portion of the fish aged in Powers et al. (2012) were also included 104 

in the present study; however, these fish were re-aged during the present study for consistency. 105 

Once otoliths were processed, aging was conducted independently (without consulting the other 106 

reader) and blindly (without knowledge of fish capture date or size) by two readers. Each otolith 107 

section was viewed using a stereomicroscope with transmitted light (brightfield illumination). 108 
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The number of opaque zones was counted along the ventral edge of the sulcus acusticus. A 109 

margin code (1 – 4) was assigned to the otolith margin according to the Gulf of Mexico Marine 110 

Fisheries Commission (GSMFC) otolith manual (VanderKooy et al. 2020). 111 

Whole age, in years, was calculated for each fish according to GSMFC guidelines. If the 112 

collection month was January – June and the margin code was 3 or 4, then the whole age equaled 113 

the number of opaque zones, plus 1. If the collection month was October – December and the 114 

margin code was 1 or 2, then the whole age equaled the number of opaque zones, minus 1. For 115 

all other combinations of capture month and margin code, the whole age equaled the number of 116 

opaque zones. Next, the number of days between the capture date and October 1 (the assumed 117 

birthdate of red drum; Ditty 1986) of the previous year were calculated. This number was then 118 

divided by the total number of days in the capture year, and the result was added to the whole 119 

age to yield the fractional age.  120 

If any otolith was assigned different whole ages, the readers consulted with each other or 121 

a third reader aged the otolith. If the two initial readers did not reach an agreement, or if the third 122 

reader did not agree with one of the two initial readers, the otolith was excluded from further 123 

analysis. Average percent error (APE) was calculated for all whole ages to evaluate between-124 

reader precision (Beamish and Fournier 1981, Campana 2001). Two-sample Kolmogorov-125 

Smirnov tests were used to examine differences in fractional age distributions between sexes. 126 

 127 

Modeling growth 128 

To estimate growth parameters for red drum in this study, the von Bertalanffy growth 129 

function (VBGF) was fit to female, male, and unknown sexed red drum for the complete data set, 130 
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fishery-independent AMRD gillnet data set, and bottom longline data set using the following 131 

equation: 132 

𝐿𝑡 = 𝐿∞(1 − 𝑒−𝐾(𝑡−𝑡0))    (2) 133 

where Lt = predicted total length in millimeters, L∞ = mean asymptotic length in millimeters, K = 134 

Brody growth rate coefficient in years-1, t = time (fractional age) in years, and t0 = hypothetical 135 

age at which length equals 0 in years (von Bertalanffy 1938). 136 

The VBGF was used to model sex-specific growth. Eight candidate versions of the 137 

VBGF were fit to the sex-specific fractional age data: a general version, where all three 138 

parameters (L∞, K, and t0) could vary between sexes; three versions where two of the three 139 

parameters could vary between sexes; three versions where only one parameter could vary 140 

between sexes; and a common version where all three parameters were held constant between 141 

sexes (Ogle 2016, Nelson et al. 2018, Jefferson et al. 2019). Akaike’s Information Criterion 142 

(AIC) was used to rank these models based on fit and to identify the best-fitting version (Akaike 143 

1998, Katsanevakis and Maravelias 2008, Ogle 2016). All growth parameters were modeled in 144 

the R v3.6.3 language and software environment (R Core Team 2020) using the add-on packages 145 

FSA (Ogle et al. 2020) and nlstools (Baty et al. 2015). 146 

 147 

Estimating mortality 148 

Using whole ages of bottom longline specimens, an age-based catch curve (Chapman and 149 

Robson 1960) was created for calculating total mortality; however, graphical examination of the 150 

catch curve revealed that critical assumptions necessary for estimating instantaneous total 151 

mortality had been violated (Tuckey et al. 2007, Smith et al. 2012). Specifically, red drum did 152 

not appear to fully recruit to the gear until age 20, so any mortality estimates generated from this 153 
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catch curve would not be representative of the stock. Although total mortality estimates were 154 

unattainable, instantaneous natural mortality rate (M) was calculated using three empirical 155 

methods (Then et al. 2015, Ogle 2016): 156 

1. Hoenigfishes, Hoenig’s (1983) log-transformed linear regression for fishes: 157 

𝑀 = 𝑒1.46−1.01𝑙𝑜𝑔𝑒(𝑡𝑚𝑎𝑥),    (3) 158 

where tmax is the maximum age of the animal in years; 159 

2. The Hoenignls (non-linear least squares) estimator (Then et al. 2015): 160 

𝑀 = 4.899𝑡𝑚𝑎𝑥
−0.916,     (4) 161 

where tmax is the maximum age of the animal in years; and 162 

3. The Paulynls-T (non-linear least squares, omitting temperature) estimator (Pauly 1980, 163 

Then et al. 2015): 164 

𝑀 = 4.118𝐾0.73𝐿∞
−0.333,    (5) 165 

where K and L∞ are parameters from the combined VBGF. All mortality analyses were 166 

conducted in R using FSA. 167 

 168 

Relative abundance 169 

Yearly changes in CPUE for red drum sampled during the bottom longline survey were 170 

examined by generating a nominal index of relative abundance. To standardize the index of 171 

relative abundance, a negative binomial generalized linear model (nbGLM) (Hardin and Hilbe 172 

2007) was fit to the CPUE data using the glmmTMB package (Brooks et al. 2017) in R. Abiotic 173 

variables thought to influence CPUE were added to the model using forward step-wise model 174 

selection. Akaike’s Information Criterion was used to identify the best-fitting model. Model fit 175 

was examined by using the DHARMa package (Hartig 2017) in R to check for uniformity, 176 
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outliers, dispersion, and zero-inflation. Multicollinearity was tested using the performance 177 

package (Lüdecke et al. 2019) in R, with variance inflation factors (VIFs) less than 10 signifying 178 

low correlation (Dormann et al. 2013). To create a standardized yearly index, the abiotic 179 

variables thoughts to influence CPUE were set to their median values. 180 

 181 

Spatial analysis 182 

The index of relative abundance generated above was used to examine trends in red drum 183 

relative abundance. First, minimum distance from shore (km) was calculated in QGIS (Quantum 184 

GIS Development Team 2019). Then, nominal CPUE was calculated for four discrete areas: less 185 

than 3 nmi from shore (i.e., state waters), 3 – 6 nmi from shore, 6 – 9 nmi from shore, and 186 

greater than 9 nmi from shore. Finally, a one-way ANOVA, followed by a Tukey multiple 187 

pairwise-comparisons test, was used to test for differences in nominal CPUE between these four 188 

areas. Age and length versus distance from shore were also examined to identify the composition 189 

of red drum vulnerable to recreational fishermen in state waters versus those protected in federal 190 

waters. 191 

 192 

Habitat modeling 193 

Boosted regression trees (BRTs) were used to describe the relationships between the 194 

CPUE of red drum from the bottom longline survey and environmental variables potentially 195 

influencing distribution and abundance. Specifically, BRTs were fit for three seasons 196 

(meteorological spring, summer, and autumn); winter data were not included in BRT analyses 197 

given few red drum captured (n = 35) and relatively low effort (n = 70 stations). Boosted 198 

regression trees use machine learning to fit complex, non-linear relationships and offer predictive 199 
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advantages over generalized linear or additive models (GLMs and GAMs). For a complete 200 

description of BRTs and the methods used in this study, see Drymon et al. (2020). 201 

Preliminary analyses indicated a high proportion of zero values (i.e., zero-inflated data). 202 

To account for the preponderance of zeros, a two-step (i.e., delta or hurdle) process was chosen 203 

to model catch data. Presence/absence probability was modeled using a BRT with a binary 204 

distribution and continuous non-zero (i.e., abundance) probability was modeled using a BRT 205 

with a Gaussian distribution. Because the catch data also contained some instances of 206 

anomalously high catch (i.e., long-tailed data), non-zero data were natural log-transformed. 207 

Predictions were reverse log-transformed so that the final model is a product of the binary and 208 

Gaussian BRTs (Lo et al. 1992). 209 

Sixteen variables from multiple sources were considered for the BRT models 210 

(Supplemental Table 1). While some variables (e.g., temperature, salinity and dissolved oxygen) 211 

were collected on-site during bottom longline sampling, all predictor data were obtained 212 

following methods outlined in Drymon et al. (2020) to facilitate comparisons with previous 213 

habitat modeling in the same region. Surface and bottom temperature (°C), salinity (psu), and 214 

three-dimensional surface and bottom current velocity (surface, northward, upward; m/s), as well 215 

as sea surface height (m), were obtained from the Hybrid Coordinate Ocean Model (HYCOM) 216 

data server (4 km resolution). Bottom dissolved oxygen (mg l-1) was obtained from the National 217 

Oceanic and Atmospheric Administration (NOAA)1 and interpolated across ∼100 – 250 survey 218 

stations (number varied by year). Depth (m) and substrate grain size (mm) were obtained from 219 

the United States Geological Survey (USGS)2, 0.33 arc seconds, (∼10 m resolution). Daylength 220 

 
1 https://www.ncddc.noaa.gov/hypoxia/products/2010 
2 http://pubs.usgs.gov/ds/2006/146/basemaps/gmx_grd/gmx_grd.zip 
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(min) was calculated in R using code by Simon Dedman3. Given the quantity of potential 221 

predictor data considered within the BRT models, some degree of spatial autocorrelation was 222 

anticipated (e.g., between distance from shore and depth, between surface and bottom 223 

temperature, etc.); however, BRTs are robust to autocorrelation among independent variables 224 

(Abeare 2009). All BRT models were fit using the package gbm.auto (Dedman et al. 2017) in R. 225 

Learning rate (lr), bag fraction (bf), and tree contribution (tc) are parameters that are used in 226 

concert to achieve minimum predictive error (Elith et al. 2008). These were optimized using 227 

gbm.auto for each season model run. 228 

 229 

Model performance and interpretation 230 

The BRT modeling approach automatically partitioned the data into training and testing 231 

sets, a ratio dictated by the bag fraction. Ten-fold cross-validation (CV) was then performed, 232 

with the members of the training/testing sets randomized each time. Performance metrics 233 

included training/testing correlation, CV deviance (and standard error (SE)) and correlation (and 234 

SE), as well as Area Under Receiver-Operator-Curve (AUC) and its CV and CV SE for the 235 

binary models (Parisien and Moritz 2009). The final Gaussian fitted functions from the BRT 236 

were visualized using marginal effect plots to indicate the effect of a particular variable on the 237 

response after accounting for the average effects of other model variables (Elith et al. 2008). 238 

 239 

Habitat suitability 240 

The distribution of suitable habitat was predicted via the BRTs described above. 241 

Environmental data for model predictions were obtained as detailed above, except that HYCOM 242 

 
3 www.github.com/SimonDedman/daylength 
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data were extracted for one representative date per season (monthly groupings per each season, 243 

i.e., MAM/JJA/SON) at a resolution of 4 km. Representative dates for environmental data were 244 

selected by ranking the absolute value of the differences of all sites’ values for all variables 245 

against the mean for those variables, then identifying the date within each season that most 246 

closely matched those values. The BRT models then generated predictive CPUE values for each 247 

2 km × 2 km cell. These values were then then mapped in QGIS using the heatmap setting to 248 

produce color points weighted by the predicted abundances generated from the BRT. Using 249 

gbm.auto, the coefficient of variance was calculated for the predicted abundance values at each 2 250 

km x 2 km cell to represent model variance. 251 

 252 

Results 253 

Catch data 254 

Between May 2006 and November 2018, 1,296 bottom longline sets were conducted and 255 

815 red drum were caught (Figure 2), 741 of which were measured and 472 of which were kept 256 

for otolith collection. Approximately 100 stations were sampled each year (mean = 100, SD = 257 

22, range 80-143), and survey effort (number of sets) was relatively well distributed across the 258 

three seasons examined in the BRTs: spring (n = 460), summer (n = 405), and autumn (n = 361). 259 

Red drum caught on the bottom longline were primarily encountered in state waters across all 260 

seasons (Figure 2) and were exclusively larger than size at 50% maturity according to Bennetts 261 

et al. (2019) (Figure 3A). 262 

 To supplement the 472 red drum retained from the bottom longline, otoliths from an 263 

additional 709 gillnet-captured red drum were analyzed, thus providing a total of 1,181 red drum 264 

for age and growth analyses. Of these fish, 392 were female, 369 were male, and 420 were 265 
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unknown sex. The female-to-male ratio was 1.06:1 and did not differ significantly from a 1:1 266 

ratio (X2 = 0.70, DF = 1, P = 0.40). Total length ranged from 80 – 1102 mm (Figure 3B). The 267 

average (± SE) total length of all specimens (bottom longline and gillnet combined) was 619.13 268 

± 8.22 mm. Kolmogorov-Smirnov tests revealed that females were significantly longer (D = 269 

0.20, P < 0.01) and heavier (D = 0.18, P < 0.01) than males. 270 

 271 

Age 272 

 Ages were assigned to 1,178 red drum. Otoliths from the remaining 3 fish (0.25% of all 273 

specimens) were deemed unreadable and were omitted from further analysis. Four fish had no 274 

length measurements and were also omitted from further analysis. The between-reader percent 275 

agreement was 93.46% and the between-reader APE was 4.52%; these estimates were largely 276 

driven by differences in the margin codes assigned to age-0 fish. Whole age ranged from 0 – 36 277 

years and fractional age ranged from 0.37 – 36.53 years. The maximum age of both sexes was 36 278 

years; however, Kolmogorov-Smirnov tests showed that fractional age distributions differed 279 

significantly by sex (D = 0.15, P < 0.01). The mean ages of females and males were 11.72 and 280 

9.90 years, respectively.  281 

 282 

Growth and mortality 283 

The VBGF equation for all age data combined (including females, males, and unknown 284 

sex) is 285 

𝑙𝑡 = 950.45(1 − 𝑒−0.31(𝑡−(−0.26))) (Figure 4A). (6) 286 

For the sex-specific data, the model version which allowed L∞ and t0 to vary by sex (“fit2L2T”) 287 

best fit the data. “Fit2L2T” was followed closely by “fit2L2K” (L∞ and K vary; ∆AIC = 1.7) and 288 
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“fitGeneral” (all parameters vary; ∆AIC = 1.7). Based on “fit2L2T,” females have a higher L∞ 289 

value compared to males. The VBGF equations for female and male red drum, respectively, are 290 

𝑙𝑡(𝐹 ) = 969.63(1 − 𝑒−0.30(𝑡−(−0.35)))  (7) 291 

and 292 

𝑙𝑡(𝑀) = 932.71(1 − 𝑒−0.30(𝑡−(−0.45))) (Figure 4B). (8) 293 

All VBGF parameters from the present study are listed in Table 1. Estimates of M were as 294 

follows: Hoenigfishes = 0.12, Hoenignls = 0.14, and Paulynls-T = 0.39. 295 

 296 

Relative abundance 297 

The final version of the nbGLM included the variables year, depth, surface temperature, 298 

dissolved oxygen, and bottom salinity. The variables latitude, longitude, bottom temperature, 299 

surface salinity, and daylength were also tested but were excluded from the final version of the 300 

model. Model fit was deemed appropriate as the model did not suffer from deviations from 301 

uniformity, outliers (Supplemental Figure 1), dispersion (P = 0.92), or zero-inflation (P = 0.87). 302 

The VIF analysis indicated a lack of multicollinearity, as all VIFs were less than 2. Year was not 303 

significant (P = 0.13) and there were no trends within the standardized index (Figure 5), 304 

indicating that the declines in the nominal CPUE data from 2007 – 2010 reflect increases in 305 

offshore sampling effort beginning in 2010 rather than changes in red drum relative abundance. 306 

 307 

Spatial analysis 308 

From 2006 – 2018, bottom longline sets were distributed fairly evenly between state 309 

(46%) and federal (54%) waters. Nominal CPUE (± SE, number of stations) was highest less 310 
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than 3 nmi from shore (1.13 ± 0.10, n = 602), followed by 3 – 6 nmi from shore (0.72 ± 0.18, n = 311 

103), 6 – 9 nmi from shore (0.35 ± 0.19, n = 58), and greater than 9 nmi from shore (0.08 ± 0.03, 312 

n = 533). The one-way ANOVA found that distance from shore was significant (P < 0.01). The 313 

Tukey multiple pairwise-comparisons test indicated that nominal CPUE was significantly higher 314 

less than 3 nmi from shore compared to 6 – 9 nmi from shore (P < 0.01) and greater than 9 nmi 315 

from shore (P < 0.01). Nominal CPUE was also significantly higher 3 – 6 nmi from shore 316 

compared to greater than 9 nmi from shore (P < 0.01). Both age (D = 0.414, P < 0.01) and length 317 

distributions (D = 0.422, P < 0.01) were significantly different for red drum caught in state 318 

versus federal waters. Notably, fish were older and larger in state waters (average age of 18 years 319 

and average length of 938 mm) compared to federal waters (average age of 12 years and average 320 

length of 887 mm). Further examination revealed a negative correlation between age and 321 

distance from shore (r = -0.239, P < 0.01) and size and distance from shore (r = -0.274, P < 322 

0.01). 323 

 324 

Model performance and interpretation 325 

Model performance was assessed for all red drum across the three sampling seasons: 326 

spring, summer, and autumn. Training data AUC scores were high across all seasons (0.90), 327 

indicating very good model performance according to criteria defined in Lane et al. (2009) 328 

(Table 2). Cross-validated AUC scores (± SE) were 0.85 – 0.86 (± 0.01), indicating that model 329 

overfitting was negligible (Hijmans and Elith 2013). 330 

 331 

Habitat suitability 332 
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Across all seasons, surface northward velocity, surface temperature, and depth were the 333 

three most influential predictors of red drum abundance (Table 2). In particular, red drum 334 

showed a preference for surface northward velocities greater than 0 m/s, with high preferences 335 

for velocities greater than 0.1 m/s (Figure 6A, D, G). Preferences for surface temperatures less 336 

than 22°C (Figure 6B, E, H) and depths between 5 and 17 m (Figure 6C, F, I) were also 337 

apparent. These predictors were consistent across seasons. In general, the most suitable habitat 338 

for red drum was predominately within state waters. A seasonal shift in predicted habitat 339 

suitability was detected, suggesting red drum prefer shallower habitats in the spring and autumn 340 

as opposed to deeper waters during the summer (Figure 7). Coefficients of variance of the 341 

predicted relative abundance were low, but were highest in deeper waters (Supplemental Figure 342 

2). Since all fish in the BRT analysis were larger than size at 50% maturity (Figure 3A), we are 343 

confident that these results do not confound localized spatial preferences with life-history shifts 344 

in habitat use. 345 

 346 

Discussion 347 

Our findings, based on a large sample size and broad size distribution, support previous 348 

studies indicating that GoM red drum are a relatively long-lived, slow-growing species. Perhaps 349 

not surprisingly, our findings are most similar to those of Bennetts et al. (2019); both studies 350 

used three-parameter VBGFs to model sex-specific growth from a similar number and size range 351 

of fish in Mississippi and Alabama. However, the maximum age reported in the present study is 352 

notably older than the maximum age reported by Bennetts et al. (2019) (36 vs. 31 years), a 353 

difference that illustrates the importance of sampling enough large, presumably old individuals. 354 

Specifically, we collected more than 4 times more individuals larger than 1000 mm TL than 355 
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Bennetts et al. (2019); two of these fish, one male and one female, were assigned ages of 36 356 

years. While fish older than 36 are likely rare off Mississippi and Alabama, future efforts to 357 

model age and growth for red drum should consider collections that span the entirety of the 358 

species’ range, as well as account for the effects of gear selectivity, temporal or spatial changes 359 

in age structure, variable recruitment, and unexplained variance arising from unsexed 360 

individuals, all of which are potential sources of growth model parameter bias in the current 361 

study.  362 

Despite the large sample size and broad size distribution captured using two fishery-363 

independent gear types, individuals between 600 and 800 mm TL (ages 3 – 6) were notably rare 364 

in our study. Interestingly, this is precisely when red drum in this region undergo maturation, 365 

according to mean size- and age-at-maturity estimates from Bennetts et al. (2019). Specifically, 366 

mean age at 50% maturity for males and females is approximately 3 years, with fully mature 367 

individuals (spawning capable and elevated GSI) undetected until ages 5 and 6 (Bennetts et al. 368 

2019). Thus, while a multi-panel gillnet adequately samples ages 0 – 2, and the bottom longline 369 

adequately samples fish aged 7 and older, fish between the ages of 3 and 6 aren’t selected for by 370 

either gear type. Similar size selectivity been shown for red drum off the west Florida shelf. 371 

Using three fishery-independent gear types (haul seine, trammel net, and purse seine), Winner et 372 

al. (2014) demonstrated that 600 – 800 mm red drum were not well represented in either haul 373 

seines or purse seines, yet were dominant in trammel net surveys. These examples illustrate the 374 

difficulty in assessing red drum and suggest that multiple gear types are needed to describe 375 

population dynamics across all life stages of this species. 376 

Surprisingly, a comprehensive review of red drum life history studies revealed that recent 377 

age-based natural mortality estimates are lacking for this species (SEDAR 2016). During the 378 
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assessment, it was concluded that the updated Hoenig equation using longevity (Then et al. 379 

2015) was the most robust approach for red drum. Our estimate of instantaneous annual natural 380 

mortality based on the Then et al. (2015) approach was 0.14 y-1, which is similar to the range of 381 

values used in the assessment (0.16 y-1 – 0.18 y-1). Unfortunately, the current assessment 382 

approach (DLMtool, Carruthers and Hordyk 2018) does not allow for age-dependent estimates of 383 

M. This is potentially problematic for red drum, as fishing pressure is higher for juveniles, which 384 

likely experience different natural mortality rates relative to older individuals. As red drum 385 

become less data-limited, developing the ability to account for age-based differences in natural 386 

mortality should be prioritized.  387 

The development of a gulf-wide index of relative abundance generated from fishery-388 

independent bottom longline surveys is critical for future assessments of red drum. During the 389 

last assessment, six potential methods were considered for generating catch advice. The only 390 

method to meet the performance criteria was Islope, which is solely based on an index of relative 391 

abundance (Carruthers and Hordyk 2018). For GoM red drum, the index of relative abundance 392 

deemed most representative of the adult spawning stock was the index based upon our bottom 393 

longline survey. Thus, the index of relative abundance generated in this study is an important 394 

step toward producing catch advice for this data-limited species. This index suggests that the 395 

relative abundance of red drum has varied little over the past thirteen years. However, given the 396 

long lifespan of red drum, changes in relative abundance for this species are likely to be delayed 397 

and gradual. Consequently, continued fishery-independent monitoring is essential, both for 398 

characterizing changes in the population and for increasing the stability of catch advice 399 

generated from future assessments that apply the Islope approach (Sagarese et al. 2018). 400 
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Current management of red drum in the GoM relies on each GoM state meeting an 401 

escapement goal (30%) of 4-year-old red drum. The premise of this management scheme is that 402 

most of these fish would enter the offshore adult population where the federal moratorium on 403 

GoM red drum protects the adult spawning stock. However, CPUE for adult red drum was 404 

substantially higher in state waters than in federal waters. This has been shown in other areas of 405 

the GoM (e.g., Winner et al. 2014) and along the east coast of Florida (Reyier et al. 2011), 406 

particularly from August to November when adults return to state waters to spawn (Lowerre-407 

Barbieri et al. 2016 and 2018). These individuals travel to localized natal areas where they are 408 

targeted within spawning aggregations (Burnsed et al. 2020). Although state-level management 409 

for red drum is primarily focused on regulating the harvest of juveniles using slot limits, the 410 

current management plans for four out of five GoM states (i.e., except Florida) also afford 411 

opportunities to keep a red drum larger than the slot limit. For example, landings data from the 412 

Marine Recreational Information Program (MRIP 2021) demonstrate that nearly 20% of redfish 413 

taken from Mississippi and Alabama state waters are greater than 30 inches fork length, whereas 414 

no fish this size are landed in Florida (Figure 8). Our findings clearly demonstrate that off the 415 

coast of Alabama, the federal moratorium does not protect the larger, older age classes of red 416 

drum from harvest. Adequately protecting these fish will require state management measures that 417 

either completely prohibit the harvest of large individuals (e.g., Florida) or impose a tag system 418 

that allows a single over-slot fish per year (e.g., Texas). 419 

The catch data support the outputs from the BRTs, which indicate that adult red drum 420 

prefer inshore, state waters. It is long established that red drum spawning schools aggregate near 421 

tidal passes (Lowerre-Barbieri et al. 2008, Reyier et al. 2011); our analysis provides a 422 

mechanistic explanation for this observation, confirming the importance of surface current 423 
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velocity when defining suitable habitat for red drum. Temperature is also well known as a strong 424 

predictor of red drum habitat use. Previous work from this region documented bimodal peaks in 425 

relative abundance in the spring and autumn and noted that these peaks corresponded to 426 

temperatures of 21 and 20 degrees, respectively (Powers et al. 2012), which are consistent with 427 

the preferred temperature values identified in this study. Based on the habitat suitability 428 

predictions from the BRTs, we speculate that during the summer, adult red drum may be using 429 

deeper, cooler waters as a thermal refuge. 430 

Conclusions 431 

Clearly, assessing a stock under a complete harvest moratorium presents distinct 432 

challenges. Nonetheless, when the data typically used to assess stock status (e.g., commercial 433 

catch data) are lacking, an opportunity exists to consider alternative data sources, which can 434 

sometimes provide new information about stock dynamics (Olney and Hoenig 2001). Such is the 435 

case for GoM red drum. In addition to updated ages, growth models, and natural mortality 436 

estimates, our investigation reveals that the adult spawning stock is not fully protected by the 437 

federal harvest moratorium. Moreover, our habitat suitability models identify factors that may 438 

predict suitable habitat for red drum in other regions of the GoM. Collectively, the findings from 439 

this study, in concert with future efforts to combine nearshore indices of relative abundance from 440 

standardized bottom longline surveys throughout the region (e.g., SEAMAP), will be critical for 441 

advancing GoM red drum from its status as a data-limited stock. 442 
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Tables 674 

Table 1 – von Bertalanffy growth parameters for combined (sexes pooled, including unknown 675 

sex) and sex-specific red drum age data. L∞ = mean asymptotic length in millimeters, K = Brody 676 

growth rate coefficient in years-1, t0 = hypothetical age at which length equals 0 in years, and SE 677 

= standard error. 678 

Linf ± SE K ± SE to ± SE 
Combined 950.45 ± 2.35 0.31 ± 0.01 -0.26 ± 0.03
Female 969.63 ± 3.42 0.30 ± 0.01 -0.35 ± 0.05
Male 932.71 ± 3.78 0.30 ± 0.01 -0.45 ± 0.06

679 

680 



29 

Table 2 – Seasonal percent contribution of the three most influential factors identified by the boosted regression trees. The AUC score 681 

assesses model ability to discriminate species presence and absence (Hanley and McNeil 1982), with a value of 0.9 considered a ‘very 682 

good score’ (Lane et al. 2009). 683 

Season Training data AUC CV AUC score ± SE 
Marginal Effect 1 Marginal Effect 2 Marginal Effect 3 

Variable % Variable % Variable % 

Spring 0.90 0.86 ± 0.01 Surface northward velocity 26.2 Surface temperature 20.7 Depth 14.7 

Summer 0.90 0.85 ± 0.01 Surface northward velocity 25.8 Surface temperature 20.4 Depth 14.6 

Autumn 0.90 0.86 ± 0.01 Surface northward velocity 25.8 Surface temperature 20.4 Depth 14.4  
684 
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Figures 685 

Figure 1 – Bottom longline (black shaded) and gillnet (blue shaded) study regions. The red 686 

dashed line indicates the boundary between state and federal waters. 687 

Figure 2 – Catch per unit effort (CPUE, red drum, hooks-1 hour-1) for red drum from the bottom 688 

longline survey during spring, summer, and autumn of 2006 – 2018. Shaded circles increase with 689 

CPUE, and X indicates effort with no red drum catch. 690 

Figure 3 – A) Length frequency distributions for red drum (sexes combined) encountered on the 691 

bottom longline. B) Length frequency distributions for female and male red drum examined for 692 

age and growth analyses from bottom longline and gillnet data sets. The dashed line represents 693 

size at 50% maturity according to Bennetts et al. (2019). 694 

Figure 4 – Combined (A) and sex-specific (B) von Bertalanffy growth curves for red drum 695 

sampled during the present study. 696 

Figure 5 – Nominal (individuals 100 hooks−1 hour−1, open circles) and standardized (filled 697 

circles) CPUE of red drum from the bottom longline survey, 2006 – 2018. Approximately 100 698 

stations per year (mean = 100, SD = 22, range 80 – 143) were sampled. Median values are shown 699 

in the standardized index. For 2009, there is no standardized CPUE estimate due to a lack of 700 

positive catch data with corresponding abiotic measurements from that year. 701 

Figure 6 – Marginal effect plots for the variables identified by the BRTs as the most influential 702 

in predicting red drum relative abundance in spring (A–C), summer (D–F), and autumn (G–I). 703 
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Figure 7 – Predicted relative abundance from BRT models for red drum in spring (A), summer 704 

(B), and autumn (C). Light shades indicate areas of low predicted abundance and dark shades 705 

indicate areas of high predicted abundance. 706 

Figure 8 –Red drum harvest data for Mississippi/Alabama (A) and Florida (B), 2006-2018. The 707 

dashed line represents size at 50% maturity according to Bennetts et al. (2019). Data are from the 708 

NOAA Marine Recreational Information Program web site (MRIP 2021).  709 

Supplemental Figure 1 – Residual diagnostic plots for examining model fit were created using 710 

the DHARMa package (Hartig 2017), which calculates quantile regression to compare the 711 

empirical 0.25, 0.50 and 0.75 quantiles with the theoretical 0.25, 0.50 and 0.75 quantiles. Any 712 

significant deviation from the expected quantile would be indicated in red. 713 

Supplemental Figure 2 – Coefficient of variation of predicted relative abundance from BRT 714 

models for red drum in spring (A), summer (B), and autumn (C). Light shades indicate areas of 715 

low predicted abundance and dark shades indicate areas of high predicted abundance. 716 
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Supplemental Table 1: Mean values and range for potential predictor variables included in the 
boosted regression trees (Table from Drymon et al. 2020) 

Predictor Source Mean ± SE Range 
Surface temperature (°C) HYCOM 25.788 ± 0.110 15.090 to 33.500 
Bottom temperature (°C) HYCOM 24.202 ± 0.109 14.280 to 31.970 
Surface salinity (psu) HYCOM 30.666 ± 0.139 0.004 to 36.013 
Bottom salinity (psu) HYCOM 31.935 ± 0.152 0.004 to 38.349 
Surface eastward velocity, u (m/s) HYCOM 0.027 ± 0.004 -0.465 to 0.538
Bottom eastward velocity, u (m/s) HYCOM 0.020 ± 0.002 -0.239 to 0.219
Surface northward velocity, v (m/s) HYCOM -0.001 ± 0.003 -0.505 to 0.432
Bottom northward velocity, v (m/s) HYCOM 0.003 ± 0.001 -0.353 to 0.232
Surface upward velocity, w (m/s) HYCOM -2.513e-8 ± 9.374e-8 -1.710e-5 to 1.790e-5

Bottom upward velocity, w (m/s) HYCOM 1.410e-6 ± 8.354e-7 -4.005e-4 to 3.023e-4

Sea surface height (m) HYCOM -0.005 ± 0.003 -0.312 to 0.329
Bottom DO (mg/l) NOAA 5.604 ± 0.048 0.224 to 12.161
Depth (m) USGS 22.518 ± 0.813 1.500 to 635.00
Substrate grain size (mm) USGS 0.097 ± 0.006 0.001 to 7.172
Daylength (min) Calculated 772.557 ± 1.637 622.083 to 846.800 
Distance from shore (km) Calculated 20.798 ± 0.712 0.002 to 101.715 
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