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EXECUTIVE SUMMARY 

The main objectives of this study were to investigate long-term, ecological time series and determine their 
ability to describe any unknown variability in the annual stock recruitment of Greater Amberjack (Seriola 
dumerili) in the Gulf of Mexico large marine ecosystem (Gulf LME), and to do so with respect to its 
particular Stock Synthesis management model’s results. As an additional focus, the relationship between 
Sargassum spp. areal coverage was examined for its capacity to impact Greater Amberjack (GAJ) 
recruitment in both spatial and temporal contexts. Three more focused models were also developed to 
explore suites of factors hypothesized to affect the early life history stages of GAJ (i.e., ecosystem and 
climate status, habitat availability, and eutrophication), and all of which yielded some level of information 
that could be applied to future ecosystem considerations for this species. Finally, the last priority of this 
effort was to determine if there was an already-existing capacity to more readily estimate GAJ new recruits 
during periods between formal assessments or SS3 model updates, using existing data collection or 
monitoring efforts. 

Overall, there were relationships uncovered between long-term, ecological time series and GAJ 
recruitment deviations. Four different time scales (1970-2015, 1982-2010, 1987-2014, and 2000-2015) 
were used to investigate GAJ recruitment deviations (i.e., unexplained variability in the formal stock 
assessment recruitment estimates), and all four showed between ~17-32% of the variability in those 
deviations could be explained by mostly decadal-scale trends, but by a ~25-year trend as well.  

Five potential leading indicators were identified out of the 48 that were assessed. The Atlantic 
Multidecadal Oscillation (AMO) and the number of both active petroleum industry-related and -unrelated 
artificial reefs displayed the best capacity to account for the variability in GAJ recruitment deviations over 
time. The two models that identified these three indicators (oil-related artificial habitat being selected twice) 
accounted for 24% (ecological model) and 16% (habitat model) of the variability in the deviations over 
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their respective time periods. Two remaining models accounted for 7% (Sargassum model #1) and 5% 
(Eutrophication) of the new-recruit deviations, and they implicated the areal coverage of Sargassum in the 
Florida Middle Grounds during the peak spawning and larval dispersal period for GAJ (March-May), and 
the dissolved oxygen (DO) levels offshore Texas in the fall sampling season. 

From a practical perspective, the DO indicator is likely to be the most straightforward to follow-up 
on due to the fact that it relates directly to the biology and physiology of the species, and it can be tested 
and constrained via laboratory experiments or focused in situ observational studies. The next most likely 
candidate for success would be related to the habitat concerns of GAJ, and specifically with respect to the 
species’ association with artificial reef habitat. There appears to be a stronger association with oil- and gas-
related infrastructure as opposed to that which is unrelated, but this may also be a consequence of recent 
changes in record keeping. Regardless, the association between both habitat types should be explored, as 
they are both likely to be important, and the current balance of their influence is not well understood. The 
Sargassum coverage in the Florida Middle Grounds also deserves additional consideration as it relates to 
GAJ, and these results further support the idea that Sargassum is an important habitat in the early life history 
of GAJ. As a leading population-level indicator for GAJ recruitment, however, it would likely require a 
better understanding of the utilization levels of Sargassum habitats in general, and which would then need 
to be extended to the range of the Gulf LME expected to support this habitat in any given year/season. 

More abstractly, the AMO index and the synthetic temporal eigenfunctions described herein might 
be adequate mathematical models to add to the predictive capabilities of stock assessment methods. 
However, in the former case in particular (and as illustrated by the results of this study), it can be very 
difficult to discern the underlying mechanisms that support the dynamics observed. This is not to say that 
it is not worth exploration, but it is worth noting that mathematical models that are not supported by a solid 
understanding of the underlying mechanisms are subject to increased likelihood of displaying unexpected 
or chaotic dynamics. As such, the AMO index, or any other synthetic or conglomerate metric, should 
undergo extensive simulation testing with respect to the modeling predictions related to this species, and 
should also be continuously evaluated and updated to avoid being taken by surprise. 

 Unfortunately, it seems as though there is little capacity at this time to extend ecosystem monitoring 
efforts into interim assessment updates, and if there were any, it would be extremely limited. Conversely, 
there is ample evidence to support the notion that ecosystem considerations should begin to be incorporated 
into the formal assessment of GAJ as soon as possible. Granted, more work needs to be done prior to 
implementation in management decision making, but the latest assessment for GAJ completed at the same 
time as this project, and there are currently no indications of an upcoming assessment for this stock prior 
to 20251. Ultimately, this report serves to outline several ecosystem-level priorities that could benefit from 
more directed effort, and which are likely to influence the understanding of the ongoing declines in the 
Greater Amberjack stock in the Gulf of Mexico large marine ecosystem. 

  

                                                           
1 http://sedarweb.org/docs/page/project%20planning%20grid_Oct2020_meeting_outcome_SEFSC_update.pdf 
(Date accessed: Dec. 31, 2020). 

http://sedarweb.org/docs/page/project%20planning%20grid_Oct2020_meeting_outcome_SEFSC_update.pdf
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1.0 INTRODUCTION 

Given that stock-recruitment relationship estimates for Greater Amberjack (Seriola dumerili) contain large 

amounts of unexplained variability (SEDAR 2014, 2016)2, and that the contemporary stock status has not 

recovered to pre-1985 levels (Karnauskas et al. 2017), this species represents an ideal candidate for the 

evaluation of non-traditional, stock-size determinants. In particular, environmental ecological factors may 

represent key overlooked aspects contributing to the recent declining stock trends for the Greater 

Amberjack (GAJ) population and its associated spawning biomass (SEDAR 2014, Karnauskas et al. 2017). 

Furthermore, preliminary fishery ecosystem models for the Gulf of Mexico (Kilborn unplublished) and 

prepared using the ecosystem-level management-indicator selection tool (Kilborn et al. 2018), showed that, 

while the overall, long-term trend has been weakly positive for the full GAJ stock since around the mid-

1990s, it generally appears to be varying on a ~12.5 year “down-up” cycle since the mid-1980s (not 

surprising timing, given the magnitude of stock changes over the study period; Karnauskas et al., 2017). 

However, there appear to be no obvious, measured variable that captures the mechanism of this cyclical 

trend for GAJ except for, possibly, the number of Gulf-wide, artificial reef structures. Lastly, there is a body 

of evidence suggesting the importance of additional habitat considerations for early-life stages for GAJ, 

specifically, the presence of the brown macroalgae Sargassum (Wells and Rooker 2003, 2004b, a). With 

the current expectations for climate change and the likelihood of increased magnitude and frequency of 

brown-algae blooms in the region (Wang et al. 2019), understanding the baseline connectivity between this 

important GAJ habitat and its influence on year class strength will be key to estimating future variability in 

this important fishery resource. 

1.1 Proposed Project Goals and Objectives 

To address these considerations, the following objectives were proposed for this project to help better 

understand the ecosystem-level ecological impacts affecting GAJ populations in the Gulf of Mexico: 

1. To determine the extent of the relationship between annual estimates for the GAJ stock’s spawning 

biomass, and subsequent recruitment levels, that can be modeled using long-term, time series 

indicators representing the natural and artificial, multi-scale, environmental and climatic factors 

hypothesized to organize the living marine resources within the Gulf of Mexico large marine 

ecosystem (Gulf LME). 

                                                           
2 See summary of SEDAR33 update to the Council here: 
http://archive.gulfcouncil.org/council_meetings/BriefingMaterials//BB-04-2017/B%20-%207(a)(2)-
GAJ%20PPT%20April2017.pdf 

http://archive.gulfcouncil.org/council_meetings/BriefingMaterials/BB-04-2017/B%20-%207(a)(2)-GAJ%20PPT%20April2017.pdf
http://archive.gulfcouncil.org/council_meetings/BriefingMaterials/BB-04-2017/B%20-%207(a)(2)-GAJ%20PPT%20April2017.pdf
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2. To explicitly examine the most recently available Southeast Data, Assessment, and Review (SEDAR) 

model for the GAJ population’s stock-recruitment relationship, and determine which environmental, 

climatic, and/or socio-ecological indicators best constrain the remaining residual variability (i.e., 

uncertainty). Primary focus will be given to GAJ early life stages’ habitat considerations, particularly 

those provided by the brown algae Sargassum, using satellite-derived, multi-scale measurements of 

bloom magnitude and timing; additional habitats and management considerations comprising the 

recent ecosystem status reports for the region will also be investigated here for their relationship to 

GAJ productivity. 

3. To develop leading ecosystem-level indicators useful to fisheries management for improving short-

term assessments of GAJ recruitment in the Gulf LME during interim periods between formal stock 

assessments, with the ultimate, long-term goal of developing daily, or weekly, products to inform in-

season decision making with up to date recruitment estimates derived from readily accessible system 

status observations. 

1.2 Proposed Deliverables Contained Herein 

The deliverables for this study contained in this document are: (1) a technical report summarizing 

Objectives 1-3 for the GMFMC; (2) an assessment of the future potential for creating a short-term, in-

season, decision support tool to better inform fisheries managers seeking to predict future recruitment for 

GAJ based on the spatiotemporal dynamics of the brown macroalgae Sargassum, and/or other ecosystem 

considerations. 

2.0 METHODS 

All data compilation, pretreatment, and modeling were performed in MATLAB r2020a computing 

environment (MATLAB 2020a). In the cases where randomization testing (i.e., bootstrapping and 

permutation) were employed, 10,000 pseudo-random iterations were used, and statistical inferences were 

based on the calculation and interpretation of p-values using a critical threshold of α = 0.05. Specialized 

functions were used from the MATLAB Econometrics Toolbox (MATLAB 2020b), along with the 

standalone Fathom (Jones 2017) and Darkside (Kilborn 2020) Toolboxes for MATLAB. 

2.1 Data Sources and Compilation 

2.1.1 Greater Amberjack Data 

All GAJ data were drawn from the most recently updated report (SEDAR 2016) produced within the 

SEDAR process. The 2016 update to the full SEDAR 33 model (SEDAR 2014) contained the only GAJ-

specific data available during the timeframe of this project, as the most recently performed full assessment 
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model (SEDAR 70) had not been formally approved for distribution. Within GAJ’s associated Stock 

Synthesis model (SS3, Methot 2000; Methot and Wetzel 2013), the stock-recruitment-relationship (SRR) 

was modeled using the standard Beverton-Holt (B-H) model with the log of unfished equilibrium 

recruitment and a virgin recruitment offset parameter estimated by the model (SEDAR 2014, 2016). The 

updated model was parameterized with a steepness value of h = 0.85 and unfished spawning stock biomass 

(SSB) of 18,835.9 (numbers in thousands). The GAJ SS3 model time series spans 1950-2015, but the 

“early” management era starts in 1970, and is the first year in which the model estimates the difference 

between modeled and predicted new recruits directly (i.e., recruitment deviations). Given that these 

recruitment deviations are constrained to sum to zero (Figure 1a), and in order to remove the effect of the 

SSB (Tolimieri et al. 2018), the recruitment deviations used here (Figure 1b) were derived directly, and 

calculated as the difference between the estimated recruits predicted by SS3 and by the B-H SRR model 

(Figure 2). Where appropriate, the recruitment deviation time series was reduced to be used in constrained 

analyses described below with environmental covariate datasets. 

2.1.2 Sargassum Data 

Data to describe the brown macroalgae Sargassum spp. (S. natans and S. fluitans) were provided by the 

Optical Oceanography Laboratory at the University of South Florida’s College of Marine Science. For the 

period February 2000 through December 2018, Sargassum values were reported as monthly mean areal 

coverage (km2), and were also translated into biomass estimates using a constant conversion factor of 3.34 

kg m-2 (Wang et al. 2018). The raw data were extracted in [0.5 x 0.5] degree (~56 km2) grid cells across the 

entire aquatic area of the Gulf LME, and partitioned into specific regions of interest based on already 

established management areas and larger sub-basin scale areas (Table 1; Figure 3). Further, the data were 

temporally constrained for use with the GAJ deviation data ending in 2015, and to explicitly capture the 

assumed peak annual spawning and larval dispersal period from March-May (Fahay 1975, Wells and 

Rooker 2004b, a, Harris et al. 2007), as well as the pelagic feeding and new-recruit settlement period from 

June-August (Table 2; Wells and Rooker 2004a, b). 

2.1.3 Gulf of Mexico Ecological Data 

Data representative of large-scale ecological characters within the Gulf LME were drawn from the two 

Ecosystem Status Reports (ESRs) created for the system in 2013 and 2017 (Karnauskas et al. 2013, 

Karnauskas et al. 2017). The ultimate suite of candidate indicators selected for this study were those that 

were hypothesized to be pertinent to the early life history stages of the GAJ stock in the Gulf (Table 3). The 

2013 ESR data terminates in 2011, while the 2017 ESR Update has data that extend through 2015 in most 

cases; unfortunately, given the variability in time series start and end dates, it was not possible to create one 
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large database that could be examined in one omnibus analysis. Therefore, the data were partitioned over 

various time periods to explore additional details related to their associations with GAJ recruitment levels 

and deviations (Table 4). 

a.  

b.  
Figure 1. Greater Amberjack Stock Recruitment Deviations 1970-2015. (a.) Model estimated (‘Est’) vs. directly 
calculated (‘Calc’). (b.) Raw calculated deviations between the Beverton-Holt (B-H) theoretical relationship and the 
Stock Synthesis (‘SS3’) outputs used for management. 

2.2 Data Exploration and Detrending 

2.2.1 Predictor Correlations 

Correlations between various sets of predictor variables were checked using the Pearson’s linear correlation 

coefficient (r; Legendre and Legendre 2012), and where variable pairs were excessively correlated (r > 

0.85), one was removed from the pool of indicators. In general, if the variables under consideration could 

be linked to a spatial extent, the one covering the larger extent was often removed in order to maintain 
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relatively “fine” spatial resolution for hypotheses testing and interpretation purposes. In all cases the 

decision was based on the general predictor model under investigation and its requirements. 

 
Figure 2. Greater Amberjack Stock Recruitment Relationship Estimates 1970-2015. Theoretical Beverton-Holt stock 
recruit relationship biomass estimates (metric of tons) over time (blue) plotted along with the Stock Synthesis output 
from the 2016 assessment update (orange).  

Table 1. Spatial Areas Investigated for Sargassum Associations. Synthetic Sargassum experimental areas (see Figure 
3) in the Gulf of Mexico and others based on existing management areas within the Gulf Council’s jurisdiction. 

Symbol Description 

coverALL Mean annual coverage (km2) for full Gulf LME 

biomALL Mean annual biomass (millions of tons) for full Gulf LME 

edges The Edges (40 Fathom Contour) 

fgbE Flower Garden Banks east 

gom Gulf-wide experimental area 

gomC Central Gulf experimental area 

gomE Eastern-central Gulf experimental area 

gomW Western-central Gulf experimental area 

mouth Gulf 'mouth' experimental area 

madison Madison Swanson Marine Reserve 

mcgrail McGrail Bank 

middle The Florida Middle Grounds 

pulley Pulley Ridge 

efhRF Essential fish habitat for reef fishes 

steam Steamboat Lumps Reserve 
See: https://gulfcouncil.org/fishing-regulations/federal/#1567024726348-197a283c-476c for details of spatial boundary 

coordinates. 
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2.2.2 Recruitment Deviation Detrending 

Given the temporal nature of stock assessment modeling, and the fact that SS3 recruitment data are based 

on a time-dependent model that incorporates the previous year’s SSB, autocorrelation is expected in these 

data. Furthermore, a quick visual inspection of the recruitment deviations (Figure 2) under investigation  

 
Figure 3. Gulf of Mexico LME and Experimental Sargassum and Existing Fisheries Management Areas. See Table 
1 for details and label definitions. 

revealed that there is at least some level of cyclicity in the response data that should be accounted for. 

Therefore, the GAJ recruitment deviations were first modeled using asymmetric eigenvector mapping 

(AEM; Blanchet et al. 2008, Blanchet et al. 2011). The AEM techniques decompose time series into patterns 

of autocorrelation that are representative of all possible temporal cycles available, given the length of the 

series and the minimum distance between observations (similar to spectral decomposition). For the 

purposes of this exercise, when any time series is converted, only the eigenvectors with eigenvalues greater-

than zero were retained for modeling, since they represent the positive temporal autocorrelation. Recall that 

positive temporal autocorrelation dictates that successive years in a time series are more likely to have 

values similar to those values observed in years that are relatively close to the year of interest, as opposed 

to those years comparatively further away along the timeline (Legendre and Legendre 2012). As such, the 
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Table 2. Hypothesized Timing of Greater Amberjack Early Life History Stages. Estimates of the month in which each life stage listed occurs (X) and special 
emphasis (grey highlights) on the peak-spawning-period class’s progress over the experimental periods used for data partitioning. ‘Spawn/Dispersal’ corresponds 
to the period where the newly-spawned and dispersed, whereas ‘Pelagic/Recruit’ refers to the period where larvae move through the earliest juvenile stages and 
recruit into the young-of-the-year (YOY) class > 150 days old. The months in italics are periods where commercial fishing is prohibited, and the underlined 
months represent recreational fishing closure periods. 

   Spawn/Dispersal Pelagic/Recruit     
Greater Amberjack Ontogenetic Stage Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

Spawning   X X X X        

Eggs   X X X X        

Yolk-sack larvae     X X X X       

Larvae (start feeding)     X X X X       

Pelagic Juveniles (feeding pelagic)      X X X X X X X X 

Recruited stage (YOY > 150 days)               X X X X X 

positive eigenvectors retained for analysis (Λi
+) each represented a relative timescale over which the autocorrelation patterns may be manifest, and 

they also capture the cyclicity of the signal. 

 As part of the detrending process to remove and explain any autocorrelative dynamics within the GAJ recruit deviations, a forward variable 

selection method (Blanchet et al. 2008a), implemented in a redundancy analysis (RDA; Rao 1964) framework, was used to determine which time 

scales best accounted for the variability in the deviations. In this case, since the response variable was univariate, the RDA analysis reduced to what 

is, essentially, multiple linear regression (Quinn and Keough 2002, Legendre and Legendre 2012). Upon completion of the Λi
+ selection, final models 

for the GAJ’s recruitment response constrained by the temporal Λi
+ predictors were developed, and from these models, two sets of information were 

retained for further analyses: (1) the modeled, or fitted, GAJ recruitment deviations, and (2) the remaining residual error (i.e., the detrended response 

data). 

2.3 Predictor Models and Variable Selection 

A second round of variable selection was utilized in order to determine which aspects of the temporally explained (i.e., fitted) and unexplained 
(i.e., detrended) GAJ recruitment response were explained by either Sargassum data, or those ecological characteristics extracted from the ESRs. 
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Table 3. List of Pertinent Ecological Predictor Indicators. Sources, observation years, and descriptions for all ecological variables considered for this study. 
Source Symbol Description Observation Years 

ESR 2017 amo Mean annual Atlantic multidecadal oscillation index  1970-2015 

ESR 2017 artREEF Annual Gulf-wide number of artificial reefs (non-oil) present  1970-2015 

ESR 2017 doLAf Annual mean dissolved O2 off Louisiana in fall 1987-2015 

ESR 2017 doLAs Annual mean dissolved O2 off Louisiana in summer 1987-2015 

ESR 2017 doTXf Annual mean dissolved O2 off Texas in fall 1987-2015 

ESR 2017 doTXs Annual mean dissolved O2 off Texas in summer 1987-2015 

ESR 2013 flood Marsh flooding rate in Barataria Bay, LA 1981-2011 

ESR 2013 flowMS Mean streamflow for Mississippi River 1980-2011 

ESR 2013 hurr ACE index of hurricane activity 1980-2011 

ESR 2017 nit Annual Gulf-wide nitrogen input from Mississippi-Atchafalaya River Basin (MARB) 1980-2014 

ESR 2017 nOx Annual Gulf-wide nitrogen oxides input from the MARB 1980-2014 

ESR 2017 oilPLT Annual Gulf-wide number of active oil platforms 1970-2015 

ESR 2013 oilSPL Number of U.S. Gulf LME oil spills 1980-2011 

ESR 2017 phos Annual Gulf-wide phosphate input from the MARB 1980-2014 

ESR 2013 precip Total precipitation for Mississippi River watershed 1980-2011 

ESR 2017 sea Mean annual change in sea level for all Gulf states 1970-2015 

ESR 2017 sstC Mean annual monthly sea surface temperature anomaly for central Gulf 1982-2015 

ESR 2017 sstE Mean annual monthly sea surface temperature anomaly for eastern Gulf 1982-2015 

ESR 2017 sstW Mean annual monthly sea surface temperature anomaly for western Gulf 1982-2015 

ESR 2017 zoopS Average zooplankton volume in the spring 1982-1984; 1986-1990; 1992-2015 

 

In all cases, a stepwise selection process with Akaike’s information criterion (AIC; Akaike 1974) was used in conjunction with RDA (Godinez-

Dominguez and Freire 2003), and an AIC cutoff (ΔAIC) of ΔAIC = 2 was used for optimal model selection and comparison using an information 

theoretic approach. Model selection was undertaken across a series of model matrices accounting for the hypothesized characteristics of the Gulf 

LME. These models were explicitly developed to capture the following overarching themes: (1) Sargassum related, (2) ecosystem-wide ecological
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and habitat characters, and (3) metrics for eutrophication associated with the Mississippi-Atchafalaya River 

basin (MARB) and hypoxia in the northwestern Gulf (Table 4). 

Table 4. List of Experimental Models, Variables Included, and Dates Covered. The following parameterizations were 
used to determine the extent of hypothesized relationships between the listed variable types (boldface) and the Greater 
Amberjack recruitment deviations over the time periods noted. Where indicated by an asterisk (*) the variables were 
included in an alternate model over the stated interval. All labels correspond to those listed in Table 1 and Table 3. 

  

Sargassum 

(2000-2015) 

Ecological 

(1982-2010) 

(1970-2015)* 

Eutrophication 

(1987-2014) 

1 biomALL amo doLAf 

2 coverALL artREEF* doLAs 

3 edges flood doTXf 

4 efhRF flwMS doTXs 

5 fgbE hurr nit 

6 gom oilPLT* nOx 

7 gomC oilSPL phos 

8 gomE precip 
 

9 madison sea* 
 

10 mcgrail sstC 
 

11 middle sstE 
 

12 mouth sstW 
 

13 pulley zoopS 
 

14 steam     

3.0 RESULTS 

3.1 Predictor Correlations and Model Compilations 

3.1.1 Sargassum Model #1 – Peak GAJ Spawning/Dispersal Period  

The Sargassum cover data collated for the peak spawning and larval dispersal period from March-May 

showed very high correlations (Figure 4) among the Gulf-wide and experimental areas in the central Gulf 

LME, and between those regions and three other predefined management areas (McGrail Bank, Pulley 

Ridge, and the reef fish essential fish habitat [EFH]). Thus, all Gulf-wide and newly-developed 

experimental areas were removed, with the exception of the region that spans the ‘mouth’ of the Gulf LME 

where the basin meets the Caribbean Sea and the Straits of Florida (Figure 3). Additionally, the Sargassum 

cover data from the eastern Flower Garden Banks was removed for this seasonal subset. For the Sargassum 

variables removed during the spawning/dispersal period, the remaining reef fish EFH indicator was at least 
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85% correlated with the truncated data in all cases but that of the eastern-central Gulf region, an area which 

was itself strongly correlated (r = 0.85) with the retained ‘mouth’ index for Sargassum coverage (Figure 

4). One very highly significant correlation (r = 0.98) was allowed to remain, that between McGrail Bank 

and Pulley Ridge, as they are geographically separated by ~950 km (~512 nautical miles) and in physically 

distinct areas of the Gulf LME (Figure 3). 

3.1.2 Sargassum Model #2 – GAJ Pelagic Feeding and Settlement Period 

In the case of the hypothesized pelagic/recruitment period from June-August, as with the 

spawning/dispersal period, many variables displayed significant correlations (Figure 4 and Figure 5). 

However, only four variables required removal due to violations of the pre-selected correlation threshold 

(Figure 5), the Gulf-wide and eastern-central Gulf indicators for Sargassum areal coverage, and those for 

the Middle Grounds and Steamboat Lumps management areas (Figure 3). As before, all removed indicators 

had a complimentary variable that was retained, but it was not universal in this case. The fact that the vast 

majority of the regional data remained “in play” during the pelagic/settlement period implies that there was 

more spatial variability over this sub-annual period than the spawning/dispersal period; in short, the areal 

coverall of Sargassum Gulf LME was relatively less homogeneous over time during the months June-

August than in March-May. 

3.1.3 Ecological Models 

The ecological dataset extracted from both the 2013 and 2017 ESRs (Karnauskas et al. 2013, Karnauskas 

et al. 2017) consisted of 20 different indicators with observations beginning from 1970-1987, and ending 

between 2011-2015 (Table 3). These variables were further reduced to represent three ecological control 

systems hypothesized to affect GAJ recruitment levels and which may, therefore, better explain the SS3 

recruitment deviations for GAJ. First, only four variables from the ecological dataset were recorded over 

the full 1970-2015 time period (Table 3), and of those four, three of them could conceivably be 

hypothesized to represent habitat considerations for GAJ, the annual number of artificial reefs and oil 

platforms, and the mean annual Gulf-wide sea level change. Therefore, these habitat considerations 

comprised one model pursued over the full-term of the GAJ recruitment data (Table 4). A second ecological 

model that was considered also included these three indicators for habitat, but was built along with other 

ecosystem-level factors whose date ranges precluded inclusion in a longer-term model. This second model 

covering 1982-2010 contained several indicators of sea surface temperature and marine ecosystem 

warming, including the north Atlantic basin-scale measure the Atlantic multidecadal oscillation (AMO), 

along with others describing hurricane activity, Mississippi River flow and related coastal marsh flooding, 

and springtime zooplankton bloom dynamics (Table 3, Table 4).  
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 The correlation plots for these two models suggested that, over the 45-year term, sea level rise is 

strongly correlated with the installation of artificial reef structures (r = 0.85, Figure 6), and is only slightly 

less-so over the relatively shorter 28-year period (r = 0.81, Figure 7). Thus, the index of sea level change 

was removed from the pool of predictors in both models prior to further analyses, as the more direct-habitat 

related metric was preferable in this case. Additionally, the indicator for sea surface temperature in the 

western portion of the Gulf LME was removed due to its high correlation with the same metric in the central 

portion of the Gulf. This latter decision was relatively arbitrary, as both areas’ metrics were significantly 

correlated with a total of seven other metrics in the ecological suite of predictors (Figure 7). 

3.1.4 Eutrophication and Hypoxia Model 

The fourth, and final, model derived from the ESR’s ecological data was one that explicitly captured the 

effects of both eutrophication in the northern portion of the Gulf LME, particularly that associated with the 

MARB, and hypoxia in marine waters offshore Louisiana and Texas (Table 3, Table 4). Among those 

indicators representative of the characteristics that define marine eutrophication (Table 3), only those for 

total nitrogen (‘nit’) and “all nitrogen oxides” (‘nOx’) were correlated above the 0.85 level (r = 0.95; Figure 

8). As such, since the information content of ‘nit’ was more general than ‘nOx’ (Karnauskas et al. 2013, 

Karnauskas et al. 2017), only the more focused ‘nOx’ was retained for further analyses. This model 

implicitly embeds both spatial and temporal considerations, since the dissolved oxygen indicators were 

dichotomized across seasons (fall and summer) and locations (Louisiana and Texas). Furthermore, the 

eutrophication metrics are explicitly derived from MARB outflow and, thus, are most relevant to the 

northern or north-western portions of the Gulf LME (Figure 3). 

3.2 Greater Amberjack Recruitment Deviations and Detrending Exercises 

Reliable GAJ stock recruitment deviations were available for the period 1970-2015 for this study (Figure 

1b), however, given the four separate time scales dictated by the models described above, four independent 

detrending processes (Supplemental Figures S1-S4; Supplemental Tables S1-S4) for the various temporally 

constrained deviations (Table 5) were undertaken using AEM techniques. These exercises elucidated the 

long-term trends in autocorrelation underlying the GAJ recruitment deviations over the time periods of 

interest, and given that all four models selected at least one eigenvector map accounting for ~17-32% of 

the unexplained stock recruitment variability (Table 6), each GAJ recruit deviation time-series was reduced 

to their fitted and detrended component parts (Figure 9). Note that, together these two components comprise 

100% of the variability in the time series of recruitment deviations, and the fitted, or modeled, portion is 

that which can be explained by the GAJ RDA model constrained by the selected Λi
+ (i.e., the remaining 
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Figure 4. Correlation Matrix for Sargassum Coverage in Peak Spawning Season, 2000-2015. Pearson linear correlations between time series of mean annual areal 
coverage of Sargassum (km2) in March-May across experimental treatment and existing management areas. Significant correlations are noted in red lettering, pink 
lines illustrate linear regressions, and histograms along the diagonal represent the indicators’ value distributions.  Data are Z-score standardized, and indicators that 
were removed prior to subsequent analysis are noted with gray bars. 

Removed 
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Figure 5: Correlation Matrix for Sargassum Coverage in Pelagic/Recruitment Period, 2000-2015. Pearson linear correlations between time series of mean annual 
areal coverage of Sargassum (km2) in June-August across experimental treatment and existing management areas. See Figure 4 for additional details. 
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Figure 6: Correlation Matrix for Habitat Model Indicators, 1970-2015. Pearson linear correlations between time series related to artificial reefs (‘artRE’), petroleum 
platforms (‘oilPL’) and sea level rise (‘sea’). See Figure 4 for additional details. 
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Figure 7: Correlation Matrix for Ecological Model Indicators, 1982-2010. Pearson linear correlations between time series related to all ecological indicators 
extracted from the two ecosystem status reports for the Gulf LME. See Table 3 for information on labels, and Figure 4 for additional figure details.  
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Figure 8: Correlation Matrix for Eutrophication Model Indicators, 1987-2014. Pearson linear correlations between time series related to all ecological indicators 
related to eutrophication and hypoxia that were extracted from the two ecosystem status reports for the Gulf LME. See Table 3 for information on labels, and Figure 
4 for additional figure details.  
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proportion of the variability that is unaccounted for by the temporal model is retained in the “detrended” 

components). In all cases, the detrended component retained the vast majority of the recruitment deviations’ 

variabilities (Supplemental Tables S1-S4), but, as noted above, in at least one case (the Sargassum model) 

the temporally autocorrelated variability represented 31.6% of the modeled variability (Table 6). All four 

models’ fitted values displayed periodic trends (Figure 9) matching the periodicity of the autocorrelation 

eigenfunctions retained to constrain them, and, for three models (Sargassum, ecological, and habitat), this 

periodicity was driven by only one Λi
+ pattern (Table 6; Figure 9a-c). The temporal expression within the 

eutrophication model, however, not only displayed a relatively short 8-year cycle, but it also incorporated 

a very long-term declining trend (Figure 9d). Lastly, it should be further noted that these four models’ 

temporal trends were all derived from the same data partitioned over different time periods as dictated by 

the ecosystem-level characteristics compiled to assess each related hypothesis (e.g., eutrophication as driver 

of GAJ recruitment variability). Thus, as always, the interpretation of these models and results should be 

tempered by the knowledge that there is an implicit problem of pattern and scale (Levin 1992) underlying 

this, or any, ecological investigation, and that the time scales selected are not necessarily representative of 

the “real” underlying dynamics and controls within the system, but, rather, are artifacts of the selected time 

frame for investigation. Having said that, it is also important to note that this is wholly unavoidable, 

especially in a management context where decisions must be made regardless of clarity. 

3.3 Predictor Variable Selections 

All models, both fitted and detrended variants, were submitted to the AIC variable selection process (Tables 

S5-S9), however, only one set of detrended recruitment deviations returned an optimal model (Table 7). Of 

the 48 ecosystem-level, ecological predictors examined, only seven were ultimately selected to explain the 

deviations in GAJ recruitment levels over their respective time periods, and two of those were deemed 

statistically insignificant via randomization methods (Table 7).  

3.3.1 Sargassum Models 

The two pools of indicators representing mean seasonal areal coverage (km2) across the Gulf LME for two 

dominant Sargassum spp., when selected for against the fitted 2000-2015 GAJ recruitment deviations, both 

returned optimal models with one regional Sargassum metric. However, only model #1 representing the 

peak spawning and dispersal period displayed statistical significance, and it was best described by the 

Sargassum coverage in the FL Middle Grounds (Table 7). The two detrended recruitment deviation models 

did not return optimal models. Recall that the fitted model in this case accounted for ~32% of the variability 

in the original GAJ recruitment deviations and was primarily described by an 8-year cyclical trend (Table 

6, Figure 9a). This model’s adjusted coefficient of determination (R2
adj = 0.2167) suggested that  
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Figure 9. Fitted vs. Detrended Greater Amberjack Recruitment Deviations. Time series plots of the fitted (circles) vs. detrended (diamonds) recruitment deviation 
values after accounting for selected asymmetric eigenvector maps. Data are Z-score standardized, and model and time period are noted in each panel.
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Table 5. Descriptive Statistics for Greater Amberjack Recruitment Deviations. Descriptive statistics for each model’s subsample of Greater Amberjack recruitment 
deviations according to the time periods listed. Tests for normality were performed using the Lilliefors test where the null hypothesis is that of no difference from 
a normal distribution. ‘StndDev.’ = standard deviation, and ‘StndErr.’ = standard error. 

Model Period n Minimum Mean Median Maximum StndDev. StndErr. Normal p-value 

Habitat 1970-2015 46 -1233.4 -286.2 -434.4 1324.6 638.25 94.12 No 0.0069 

Ecological 1982-2010 29 -1233.4 -124.6 -250.0 1324.6 679.16 126.12 Yes 0.1097 

Eutrophication 1987-2014 28 -1089.1 -190.5 -339.9 1254.6 595.89 112.61 Yes 0.0511 

Sargassum 2000-2015 16 -1089.1 -389.4 -467.1 1165.6 519.35 129.84 Yes 0.3259 

Table 6. Selected Asymmetric Eigenvector Maps and Optimal RDA Model Results. Optimal RDA models for selected eigenfunctions (Λi
+) used to detrend and 

fit Greater Amberjack recruitment deviations among the four experimental model treatments’ time periods. The temporal patterns’ scales are related in the ‘Period 
#’ column. 

Model Period n Λi
+ (Period 1) Λi

+ (Period 2) F R2 R2adj p-value 

Habitat 1970-2015 46 Λ2
+ (23 years) - 10.5 0.1922 0.1738 0.0029 

Ecological 1982-2010 29 Λ5
+ (11 years) - 7.0 0.2067 0.1773 0.0141 

Eutrophication 1987-2014 28 Λ1
+ (28 years) Λ7

+ (8 years) 4.9 0.2794 0.2218 0.0169 

Sargassum 2000-2015 16 Λ4
+ (8 years) - 7.9 0.3621 0.3165 0.0071 

Table 7. Optimal Predictor Models Developed via Variable Selection. Final predictors selected via Akaike’s information criterion to model the fitted (‘Fit’) and 
detrended (‘Dtrnd.’) Greater Amberjack recruitment deviations according to experimental treatments. The adjusted coefficients of determination (R2

adj) for the 
temporally constrained models are in the second column, and the R2

adj for each subsequent optimal predictor model in the penultimate pair of columns 
are to be interpreted with respect to the original models’ proportion of explained variability (extended values are presented in Table 8). See Table 1 
and Table 3 for predictor labels and details. Models with boldface predictor labels and p-values were statistically significant (α = 0.05). 

   Selected Predictors F R2adj p-Value 

Model Fit R2adj (Dtrnd.) Period Fit Dtrnd. Fit Dtrnd. Fit Dtrnd. Fit Dtrnd. 
Habitat 0.1738 (0.8262) 1970-2015 'oilPLT' + 'artReef'  239.12 - 0.9137 - 0.0001 - 
Ecological 0.1773 (0.8227) 1982-2010 'precip' 'amo' + 'oilPLT' 3.94 6.75 0.0949 0.2910 0.0586 0.0050 
Eutrophication 0.2218 (0.7782) 1987-2014 'doTXf'  9.69 - 0.2434 - 0.0045 - 
Sargassum #1 0.3165 (0.6835) 2000-2015 'middle1'  5.15 - 0.2167 - 0.0378 - 
Sargassum #2 0.3165 (0.6835) 2000-2015 'mouth2'   - 2.57 - 0.0949 - 0.0884 
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approximately 22% of that 32%, or ~7% of the original total unexplained GAJ recruitment variability, could 

be explained by this management area’s seasonal Sargassum coverage metric (Table 8).  

3.3.2 Ecological and Habitat Models 

The models developed for the ecosystem-level ecological characteristics drawn from the ESRs for the 

region were the most complex of all. This complexity was relative, though, as the two statistically 

significant models only selected two variables apiece. However, the ecological and habitat models together 

were additionally unique in that they had significant models for the detrended and fitted GAJ recruitment 

deviations, respectively (Table 7). When considering the habitat model, which covered the longest study 

period (1970-2015), the fitted recruit deviations were best explained by the annual number of oil platforms 

and non-petroleum industry artificial reefs present Gulf-wide (Table 7). This model displayed, by far, the 

best relationship between explained to unexplained variability (F = 239.12) compared to all others 

developed, and also had the lowest p-value, implying that the observed relationship was not only great in 

magnitude, but also that it was highly unlikely to have presented via random processes alone (Table 7). 

Additionally, while the strength and significance of this model were legitimate, the proportion of the total 

variability accounted for in the original GAJ recruitment deviations was the second highest modeled (~16%; 

Table 8). Finally, it is important to recall that this model was derived from the 23-year autocorrelation signal 

uncovered using AEM analysis (Figure 9b). 

 The period 1982-2010, for which the full ecological model was developed for the Gulf LME, was 

unique in that these series of GAJ recruitment deviations could only be accounted for in the non-temporal, 

or detrended, sense. Thus, none of the predictor variables appeared to be sufficiently varying on the 11-

year autocorrelation scale (Figure 9c) to be able to describe ~18% of the new recruit deviations accounted 

for by that model, but two were competent enough to capture ~29% of the remaining 82% of the deviations’ 

variability observed over that same time period. This implies that the model accounted for ~24% of the 

total GAJ recruitment deviation variability over that 29-year period of GAJ monitoring and management 

model (Table 8), and which is potentially non-trivial. Furthermore, of the two variables selected, one was 

also retained in the habitat model, the number of oil platforms. The other selected metric was a basin-scale 

climatic variable associated with temperature changes in the north Atlantic Ocean, the AMO (Table 7). 

3.3.3 Eutrophication Model 

Much like the Sargassum models, the model exploring the effects of eutrophication in the northern and 

north-western Gulf LME yielded one indicator that explained a statistically significant portion of the GAJ   
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Table 8. Modeled Proportions of the Total Variability in Greater Amberjack Recruitment Deviations. Total percentage 
accounted for of the original Greater Amberjack population’s recruitment deviation’s variability (‘Total % Modeled’) 
by each experimental model. Totals are derived from the temporal models’ (using fitted or *detrended values) 
‘Proportion of Total’ variability, and their associated predictor model’s proportions accounted for (‘Modeled Prop.’).  

 Temporal  Predictor  

Model Proportion of Total Modeled Prop. Total % Modeled 

Habitat 0.1738 0.9137 16% 

Ecological* 0.8227 0.291 24% 

Eutrophication 0.2218 0.2434 5% 

Sargassum #1 0.3165 0.2167 7% 
 

recruitment deviations over the period 1987-2014 (Table 7), and it too was associated only with the 

temporally constrained model. Recall that this temporal model was derived from two AEMs representing a 

long-term continuous 28-year trend and a cyclical 8-year repeating pattern (Figure 9d), resulting in the most 

complex temporal dynamics observed in GAJ recruitment deviations over any time scale investigated. In 

this model, the dissolved oxygen levels offshore Texas in the fall sampling season best captured the 

recruitment dynamics, but, also like the Sargassum model, the overall measured effect was relatively small 

(~5%, Table 8).  

4.0 DISCUSSION 

4.1 Climate and Habitat Considerations 

The model that described the greatest proportion of the GAJ recruitment deviations over time was the 1982-

2010 ecological model with AMO and the number of oil platforms present Gulf-wide. While this model 

accounted for ~24% of the recruitment variability, it was the only model that explained non-temporally 

structured deviations in the GAJ stock recruitment levels. In conjunction with the original autocorrelation 

model based on its Λ5
+, and which captured a repeating decadal cycle (Figure 9c), these three components 

captured approximately 41% of the total variability in the GAJ recruitment deviations over that time scale. 

The first variable selected in the non-temporal model was the AMO (Table S6), and it appeared to have an 

inverse relationship with recruitment deviations (Figure 10a), implying that higher AMO values correspond 

with below-average (and negative) deviations and, therefore, overestimated recruitment levels. Given that 

the AMO is a measure of warming surface waters in the northern Atlantic Ocean (Nye et al. 2014), and is 

known to have numerous teleconnections across great spatial scales (Enfield et al. 2001, Zhang et al. 2012, 

Nye et al. 2014), including within the Gulf LME and its related fisheries (Karnauskas et al. 2015, Kilborn 

et al. 2018), it is not surprising that it has been identified as a notable climate-related predictor for GAJ 

recruitment. It also implies that there is a forcing relationship that is unaccounted for, and which could serve 
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to explain why the recruitment levels in certain years are being misrepresented. What is not obvious, 

however, is what the nature of this relationship is, and what the mechanisms at play are. For example, given 

that GAJ are known to spawn offshore (Fahay 1975, Wells and Rooker 2004a), and AMO is thought to 

affect large-scale circulation patterns (Nye et al. 2014), it is conceivable that physical advection of larvae 

could play a role in the success or failure (Johnson et al. 2017) of any given year class, and that this could 

ultimately be ascribed to movement of the AMO. This is only one of many possible scenarios that might 

be at play. 

In addition to the AMO, the number of active oil platforms in the Gulf LME was also selected for this 

model, and seemed to display a somewhat mixed relationship with recruitment deviations over time. In this 

instance, the oil platform metric showed two very clear periods of below-average numbers (1982-1988 and 

2008-2010) and the 1989-2007 period displaying well above-average patterns, and all while the recruitment 

deviations displayed both above- and below-average activity over the same timespans, respectively (Figure 

10a). Decomposing the relationship between GAJ and oil installations does become more complicated by 

the fact that it is a Gulf-wide metric that cannot be interpreted spatially, thus reducing to a general 

implication of the importance of this underwater infrastructure as a habitat, but not which particular physical 

or chemical conditions might also be attractive in these environments (e.g., deep water platforms vs. 

shallow, eastern Gulf vs. western).  

Furthermore, when examining all 46 years of recruitment data for autocorrelative dynamics, the ~11-

year cycle captured by Λ5
+ over the 1982-2010 period does not present itself, and instead that period’s Λ2

+ 

is selected as the only temporally relevant trend, and which models a 23-year, unimodal up-down pattern 

for GAJ recruit deviations (Figure 9b). Fortunately, the number of oil platforms was selected for this optimal 

model as well, and which implies that either this metric does encapsulate a real effect toward the recruitment 

success (or failure) of GAJ conferred by installing offshore habitats, or it embodies a mathematical artefact 

or temporal coincidence. The long-term model adds further support for the argument in favor of oil 

platforms as important habitats for GAJ recruitment as it appears that, in addition to tracking closely with 

the temporally constrained trends in recruitment deviations throughout the entire 46-year time series, the 

only divergence between the two appears after the stark increases in artificial reefs not related to petroleum 

production in the mid-1990s. Interestingly, that “divergence” manifests more as a delay in the response, 

and the current status of the matter is that oil platforms continue to track closer than ever with GAJ 

recruitment deviations (Figure 10b). Other artificial reefs, on the other hand, seem to have a mostly negative 

relationship with GAJ new recruit estimate deviations, and their dynamics appear to support the idea that 

the growth in these aquatic habitats, while still increasing, has mostly level-off. Currently, while non- 
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a.  

b.  
Figure 10. Time Series Plots of Model Recruit Deviations and Ecological Covariates. Time series of the temporally 
constrained Greater Amberjack recruit deviations (circles) plotted along with selected covariate predictors (diamonds) 
for the ecological (a.) and habitat (b.) models. Data are Z-score standardized, temporal scale is noted on the x-axis, 
and panel legend’s contain predictor details. See Table 3 for more descriptor details. 
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petroleum related artificial reefs are at a relative all-time high, the 23-year period model’s fitted recruitment 

estimates are below average, and this may imply that by considering increasing levels of this habitat when 

estimating GAJ recruitment, it may help reduce the frequency of overestimations. 

4.2 Sargassum Considerations 

Another primary focus of this project was to assess the relationship between floating Sargassum mats in 

the greater Gulf LME and unexplained GAJ recruitment variability. In order to do this, remote-sensed 

satellite data were used to estimate the areal surface expression of the macroalgae across major sections of 

the Gulf, at monthly intervals, for the period 2000-2018. The GAJ recruitment data were only available 

through 2015, and, unfortunately, the SS3 products were temporally limited by the fact that only annual 

estimates are obtained through the model’s outputs. Additionally, the satellite data were observed at the 

relatively course spatial resolution of ~56 km2 pixel-1. For reference, the Gulf LME covers ~1.5 million km2 

(Kumpf et al. 1999), the GMFMC’s jurisdictional area is ~628,830 km2 and the area designated to EFH for 

reef fish is ~349,136 km2 (GMFMC 2016), the FL Middle Grounds3 covers ~1,193 km2, and the total area 

ascribed to all artificial reef structures (within the reef fish EFH) was ~21 km2 (GMFMC 2016). Further 

spatial complications included, for example, that both of the Flower Garden Banks’ eastern and western 

locations were contained within a single pixel, or that The Edges was contained within four pixels, but 

Steamboat Lumps resides within the lower right quadrant of that 2 x 2 grid (Figure 3). Nevertheless, it was 

instructive to explicitly test each of the management areas noted in Table 1, and to provide at least some 

spatial context to the question of Sargassum’s influence on GAJ recruitment. 

 The two models considered not only contained the implicit spatial hypotheses that any area selected 

could be presumed as important to the overall recruitment dynamics, but given the separation of data across 

seasons, there were implied temporal hypotheses under investigation as well. The seasonal periods March-

May and June-August, were selected to capture the peak spawning and larval dispersal period (Fahay 1975, 

Wells and Rooker 2004a, Harris et al. 2007) and the pelagic feeding and young-of-the-year settlement 

period (Wells and Rooker 2004a, b), respectively. Greater Amberjack are thought to associate with 

Sargassum in the earliest portions of their life history and after the first 6-months it has been suggested that 

they switch to a more demersal existence (Wells and Rooker 2004a). Thus, there was some expectation that 

a fair number of associations would be borne out across a variety of spatial scales, or at least in some of the 

more offshore regions, as there have also been notable associations with greater juvenile GAJ abundance 

and spawning activity with increasing distances from shore (Fahay 1975, Wells and Rooker 2004a). 

                                                           
3 https://gpsfishingmaps.wordpress.com/florida-middle-grounds-map/ 
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 Unfortunately, only two regions were selected, and only one in each of the two seasonal models. 

Furthermore, the latter model (i.e., the pelagic/settlement period) was deemed insignificant given that over 

800 of the 10,000 randomized models produced results as extreme as those observed in the data collected. 

Thus, the only Sargassum-related metric that was retained was the areal macroalgal coverage in the FL 

Middle Grounds management area during the spawning/larval period March-May. Notably, this model was 

an extension of the temporal model used to detrend the data, and was based on the fitted scores that followed 

the 8-year cycle of autocorrelation that accounted for ~32% of the original GAJ recruitment deviations over 

the period 2000-2015. Therefore, no additional explanatory capacity is gained by this model than that which 

was provided by the associated eigenfunction, except to discern that while 35% of the recruitment 

variability can be explained by the temporal signal, only ~7% of the total variability (i.e., ~22% of that 

35%) is accounted for by this region’s Sargassum coverage parameter. “Why the FL Middle Grounds?” 

and “Why during March-May?” is not immediately clear. It is notable, though, that another inverse 

relationship between GAJ recruitment deviations and the selected predictor was present (Figure 11a). Over 

the 15-year period of the model, it appears as though relatively high Sargassum coverage in the FL Middle 

Grounds translates to negative GAJ recruitment deviations, implying that greater coverage leads to lower 

recruitment than expected by B-H during that year. 

4.3 Eutrophication and Hypoxia Considerations 

The final model that was presented in this analysis covered the period 1987-2014, and focused on the effects 

of both eutrophication in the system as well as the effects of hypoxia in offshore demersal waters of the 

shelf ecosystems associated with Louisiana and Texas. This model identified the dissolved oxygen (DO) 

levels in benthic waters offshore of Texas in the fall sampling season to be the most useful metric for 

accounting for GAJ stock recruitment deviations. Overall, this model accounted for the least amount of 

total variability in recruitment deviations, but it did have the second highest ratio of explained to 

unexplained variability and the second lowest randomized p-value. Together, these do seem to imply that 

this model is notable, and upon further inspection it can be seen that the DO trends in Texas track very 

closely with both the 8-year repeating cyclical and the 28-year steadily declining trends captured by the 

eigenvectors used as the basis for this model (Figure 11b). Within this temporally constrained model, 

Texas’s marine DO levels in the fall accounted for ~5% of the total recruitment deviations for GAJ, but 

they appear to do so very well. This is notable as there is evidence that suggests low DO levels (~12.5% 

saturation) can lead to birth defects and increased instances of larval failure (Sawada et al. 2006). 

Furthermore, when rearing GAJ in aquaculture settings, an optimal range for DO is ~6.0-7.0 mg l-1 

(Papandroulakis et al. 2005), however, the DO conditions in the western Gulf LME in the fall have notably 

been below the 6.0 mg l-1 range since the early portion of the 2000s (Karnauskas et al. 2017). Given that 
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a.  

b.  
Figure 11. Time Series Plots of Model Recruit Deviations with Sargassum and Hypoxia Covariates. Time series of 
the temporally constrained Greater Amberjack recruit deviations (circles) plotted along with selected covariate 
predictors (diamonds) for the Sargassum (a.) and hypoxia (b.) models. Data are Z-score standardized, temporal scale 
is noted on the x-axis, and panel legend’s contain predictor details. See Table 3 for more descriptor details. 
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the DO conditions across the range of spawning area for GAJ have deteriorated over time (Karnauskas et 

al. 2017), it is plausible that there has been a long-term effect on the recruitment capacity of the GAJ stock. 

Unfortunately, the timing of the indicator selected in this model (i.e., the fall season) does not match the 

temporal hypotheses set out above with respect to the Sargassum models (i.e., spawning/dispersal vs. 

pelagic/settlement phases). 

4.4 Leading Indicators for Greater Amberjack Recruitment 

Over the course of this study, five ecological indicators were selected as having some level of capacity to 

constrain the unexplained variability in GAJ recruitment deviations: (1) the AMO index, (2) the number of 

active oil platforms in the Gulf LME, (3) the number of non-petroleum industry artificial reefs, (4) the mean 

annual areal coverage of Sargassum in the Florida Middle Grounds in the March-May spawning and larval 

dispersal period for GAJ, and (5) the DO levels offshore Texas in the fall. On the surface, all of these 

metrics appear to be reasonable candidates for leading indicators of recruitment success for GAJ, but the 

reliability of each, and the full dynamical range of their relationships with GAJ, are not fully understood at 

the level of predictability, especially not in a management context. Nevertheless, there are some apparent 

weightings that can be estimated with respect to the likelihood of success in determining mechanistic 

support for the high-level linkages uncovered here. 

4.4.1 Leading Environmental Indicators 

The indicator that can be most directly related back to physiological constraints on the species would be 

that for the DO levels in Texas’s waters. Therefore, even though this particular measure was in one of the 

least explanatory models, it still represents the best lead in terms of understanding the true nature of the 

success or failures conveyed by changes in this environmental parameter. For example, in addition to tank 

experiments and laboratory studies that could estimate the physical tolerance and response ranges for a 

compliment of GAJ life-stages across a range of activity levels, temperatures, and oxygen concentrations, 

simulation studies such as management strategy evaluations can be performed to estimate the impacts of 

those experimentally-derived ranges on fecundity, larval survival, and subsequent population statuses and 

future planning scenarios. This type of work could be extended into follow-up investigations regarding the 

influence of the AMO on recruitment levels, however this would require a much more detailed and nuanced 

analysis incorporating the relationship between the AMO and DO in the Gulf LME. 

As previously stated, the AMO index reflects a natural environment that has the potential to alter a 

number of different physical and chemical processes in the Gulf LME by way of altered temperature, 

circulation, precipitation, or freshwater inflow patterns. All of which is to state, once again, that changes in 

the AMO represent a complex amalgamation of symptoms manifest in the marine ecosystem of the Gulf, 
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and to determine which of those signals is actually impacting the GAJ stock in the LME is an equally 

complex task that likely requires focused in situ and laboratory studies. Once again, however, simulation 

studies could be performed to assess the effective capacity of the metric to account for recruitment 

variability simply as a mathematical construct, and not as a mechanistic information criterion. Caution 

should be employed in all cases, however, because the nature, magnitude, and internal dynamics of the 

teleconnections associated with the AMO are often variable over time in fisheries contexts (Nye et al. 2009, 

Alheit et al. 2014, Nye et al. 2014, Karnauskas et al. 2015, Kilborn et al. 2018). 

4.4.2 Leading Habitat Indicators 

The remaining ecological factors that were flagged as potential leading indicators for GAJ recruitment were 

mostly related to habitat considerations. Much like the AMO, however, habitat represents a complex 

tapestry of actual mechanisms and interactions that could underly the nature of the true relationship. Thus, 

while underwater structure and artificial habitat appears to be a very powerful factor for GAJ as a species, 

it is unclear how this influences recruitment, and even when only exploring the unexplained deviations in 

the SS3 model (i.e., a small component of the estimated recruitment from the model). This can be seen in 

the apparent oppositional effects on stock recruitment deviations due to changes in artificial reefs that either 

are, or are not, associated with the petroleum and gas industry. As mentioned above, it is encouraging that 

both the AMO and the number of oil platforms in the Gulf LME were both able to explain detrended 

variability in the deviations, as this implies that this is actually wholly new explained variability for this 

species that was not driven by temporally-associated processes. Unlike the AMO, however, the effects of 

oil industry infrastructure on GAJ has been studied to some degree, and there is a known association 

between this species and the habitat (Seaman et al. 1989, Stanley and Wilson 1997, Franks 2000, Reynolds 

et al. 2018). 

 Considering Sargassum as habitat for GAJ is also not unreasonable, as there are documented 

associations with this species and the floating macroalgae as well (Bortone et al. 1977, Wells and Rooker 

2004b, a). Once again, though, this is very likely to be a more nuanced relationship due to the fact that 

Sargassum habitats foster a large diversity of fishes (Bortone et al. 1977, Wells and Rooker 2003). 

Therefore, in addition to the provision of refugia, a variety of other interspecific and density-dependent 

considerations (e.g., predator-prey dynamics, competition for resources or space) become worthy of 

investigating to disentangle the true advantages (or disadvantages) that are associated with annual variation 

in the availability of this form of aquatic habitat. The models developed here identified, specifically, the FL 

Middle Grounds as a notable location to monitor Sargassum, and particularly during the spawning season 

for GAJ. This information could be the basis for designing a more focused study within that area, or the 

larger Gulf region surrounding it, but it also points to a gap in the understanding of the impacts of spatial 
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constraints on fish species, particularly habitat-associated ones, in the LME. There is some evidence to 

suggest that the FL Middle Grounds benefits from weak larval dispersal effects (Johnson et al. 2017), and 

so this is a plausible mechanism that could contribute to this areas apparent importance to GAJ recruitment, 

but more investigation into that matter would be required. Therefore, while this work showed promise for 

Sargassum as a leading indicator, considerably more observational work may need to be undertaken in 

order to ascertain which spatiotemporal factors better suit for predictive purposes. Since Sargassum is itself 

a passive agent with respect to mobility, simulation studies related to physical dispersal patterns of the 

surface expression of algal mats would be beneficial to management, provided a more detailed 

understanding of the utilization of these habitats can be incorporated as well. 

4.4.3 Autocorrelation and Periodic Signals 

It should be noted that the data used for these studies were derived from those used in management decision 

making, and are themselves the product of a very complex data collection, validation, and subsequent 

modeling process. As such, they constitute the best available science and knowledge concerning the stock, 

at least until a new (or updated historical) model is developed. Additionally, and as previously noted, given 

the nature of the time-series models used for those efforts, some level of temporal autocorrelation might be 

expected. It does come as somewhat of a surprise, however, to see that no less than ~17% of the adjusted 

variability (max R2
adj ≅ 32%) in any time series of GAJ recruitment deviations could be explained by wholly 

synthetic AEM models derived from the annualized period of study. In all cases, the relatively short-term 

and repeating period of ~8-11 years (potentially a decadal cycle) was prevalent across three of the five 

temporal models, and two of those with n > 25 years displayed longer temporal trends as well (averaging 

~25 years between them). 

The persistence of these scales and trends across models implies one of two things, (1) there are 

unaccounted for factors that operate on these temporal scales, or (2) there is some sort of mechanistic bias 

imparted by the modeling process for SS3. The existence of significant synthetic temporal factors that can 

moderately predict portions of the SS3 model’s error is not an indictment of the assessment model itself, 

but rather, it is a call to better understand the temporally structured drivers that are influencing the outcomes 

it predicts, and incorporate them into a better informed, next-generation stock assessment model. The 

eigenvector techniques used here can inform those models, and could even be used as standalone substitutes 

in the absence of real mechanistic indicators. However, constant monitoring and recursive updating would 

be required in order to avoid missing the replacement of one dominant temporal signal for another, in the 

cases where more than one time scale is relevant (e.g., eutrophication model). 
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5.0 CONCLUSIONS & RECOMMENDATIONS 

The main objectives of this study were to investigate long-term, ecological time series and determine their 

ability to describe any unknown variability in the annual stock recruitment of Greater Amberjack in the 

Gulf LME, and to do so with respect to its particular SS3 management model’s results. As an additional 

focus, the relationship between Sargassum spp. areal coverage was more closely examined for its capacity 

to impact GAJ recruitment in both spatial and temporal contexts. Three more focused models were also 

developed to explicitly explore other suites of factors hypothesized to affect the early life history stages of 

GAJ (e.g., habitat, water quality), and all of which yielded some level of information that could be applied 

to future ecosystem considerations for this species. Finally, the last priority of this effort, to determine if 

there was an already-existing capacity to estimate GAJ new recruits during periods between formal 

assessments or SS3 model updates using existing data collection or monitoring efforts, was somewhat more 

complex than expected, partly due to spatial and temporal mismatches in the available data. 

 In short, and to address the first main objective of this work, there does appear to be some capacity 

to compliment future stock assessment efforts by incorporating ecosystem considerations into the GAJ’s 

stock dynamics. Unfortunately, the realization of this capacity may still require further investigation prior 

to implementation. For example, each of the significant models discussed here only accounted for < 25% 

of the variability in the deviations between the theorized B-H stock recruitment levels for GAJ and the bias-

adjusted SS3-derived values (i.e., the reality at the time), and only one of those models actually spanned 

the entire 46-year time period for which recruitment deviation data were available. Thus, at a very general 

level, these models show that environmental considerations should be included in any conversation 

regarding a predictive model of GAJ recruitment levels. The modeling and variable selection processes 

outlined above were undertaken in an effort to explain both the temporal (i.e., fitted) and non-temporal (i.e., 

detrended) GAJ recruitment deviations, and to try to determine if there are any currently monitored ESR 

indicators or Sargassum-related metrics that could capture their unexplained dynamics. Where these models 

fall short implies more to learn, other important factors that are currently unmonitored, and relationships or 

dynamics yet to be uncovered. 

 The data for this work, aside from the Sargassum data collected specifically for the task, were all 

publicly available at the time of the investigation, and were intentionally limited to this scope due to the 

desire to determine if there were any immediate potential to inform GAJ management in between SEDAR 

events. One of the take-aways from this process is that the mismatched observation timescales across suites 

of related characteristics was problematic. For example, very few indicators were collected over the entire 

time series used for GAJ management. In other cases, as seen when comparing the periods actually 

modeled, while many variables ended ~2014-2015, the starting dates were not compatible (i.e., 1970 vs 
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1982 vs 1987 vs 2000). Further, to reduce the majority of the data such that it would all be able to be 

considered at once would mostly repeat similar analyses performed on 2013 ESR data (Karnauskas et al. 

2013, Karnauskas et al. 2015, Kilborn et al. 2018). This highlights an existing problem in ecosystem-based 

management, where long-term monitoring data are not always sustained or funded to the level required for 

recurring reassessment and management uptake. 

 Out of all the ecosystem considerations modeled and selected for against the GAJ recruitment 

deviations, the Sargassum results were the least encouraging, presumably because they provided no real 

certainty except to say that more focused field work and monitoring research are required. Those variables 

most likely to produce immediate returns on research effort are related to the oxygen saturation of the 

aquatic environment, potentially offshore Texas in particular, and the association of the species with 

petroleum extraction infrastructure. This artificial structure work could also reasonably extend to other, 

non-oil related installations as well. Lastly, the effects of the AMO and its teleconnected processes are 

important to the GAJ stock recruitment relationship, however the extent of that relationship, and the 

mechanisms at play are not well understood and will require significant further effort to untangle. 

 The weight of evidence appears to imply that, in addition to the fishing-related considerations built 

into the high-complexity, age-structured SS3 model for GAJ, habitat and water-quality considerations may 

also benefit its predictive performance. While the largest gains in knowledge are likely to be tied to habitat-

availability related concerns, the higher probability of successfully uncovering the magnitude, direction, 

and timing of the relationship for incorporation into mathematical modeling may lie with other, lower-

impact parameters such as DO. Unfortunately, in all circumstances, more work will need to be done in 

order to produce interim, sans-SEDAR recruitment updates. Furthermore, far more spatially and temporally 

explicit sampling and modeling will need to be undertaken in order to better understand the level of usage 

of Sargassum habitats throughout the GAJ’s ontogeny. This work provides greater insight into the trade-

offs associated with GAJ recruitment and its aquatic environment and climate. Over time, and as more work 

focused on incorporating ecosystem-considerations into understanding the particular effects to the Gulf of 

Mexico’s Greater Amberjack stock’s population dynamics, demographics, and reproductive capacity 

emerges, how to incorporate these matters into decision support tools will become more apparent. For the 

moment, though, the first set of priorities has been identified via these analyses. 
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